电化学气体传感器的电路分析

电化学气体传感器的普及可以归因于其线性输出、低功耗要求和良好的分辨率,一旦根据目标气体的已知浓度进行校准,其测量的重复性和精度也非常好。数十年来技术的发展,让这些传感器可以对特定气体类型提供非常好的选择性。

由于其优点众多,工业应用(例如用于保护工人安全的有毒气体检测)率先采用了电化学传感器。这些传感器的运行经济性促进了区域有毒气体监测系统的部署,确保了采矿、化学工业、沼气厂、食品生产、制药工业等行业员工的安全环境条件
 
在美国, 国家职业安全与健康研究所(NIOSH)和美国政府工业卫生学家会议(ACGIH)已规定了许多有毒工业气体的短时间和长时间接触限值。
“长时间接触限值” (TLV-TWA)是指大多数工人可以在正常 8 小时工作日内反复接触而不会受到有害影响的时间加权平均浓度。
 
“短时间接触限值”(TLV-STEL)是指大多数工人可以短时间接触而不会受到刺激或伤害的浓度。
 
“立即威胁生命或健康的浓度” (IDLHC)是一种限制性浓度,它会对生命立即或缓慢产生威胁,导致不可逆转的健康损害,或者影响工人独立逃生的能力。表 1 列出了几种常见气体的限值。


图一 给出了该便携式气体探测器的电路。双通道微功耗放大器LTC8332在恒电位配置(U2-A)和跨导配置(U2-B)下使用

                                                                                                             图一

电化学气体传感器—恒电位电路设计

  1. 三电极的介绍

为了操作电化学传感器,需要控制电路,称为恒电位电路。对于三电极传感器,主要目的是维持参考电极(RE)和工作电极(WE)之间的电压,以控制电化学反应并输出与产生的电流成比例的输出信号
 
传感器响应目标气体,氧化或还原气体,产生与气体浓度成比例的电流。这个电流必须通过反电极(CE)提供给传感器。
 
当检测到气体时,传感器电流上升,并且反电极相对于参考极化,反电极的电位并不重要,只要电路能提供足够的电压和电流来维持工作电极的正确电位即可。

  1. 测量电路设计:

1)运放U2-A提供工作电极需要的电流,输入偏置电流要求小于5nA,其中有毒气体传感器的电容特别大,小偏移容易引起大震荡,所以要有低的失调电压,小于1mV甚至小于100μV最好

2)运放U2-B, I/V转换,把传感器电流转换为与气体浓度成正比的电压

3)C5降低高频噪声

4)R5,C6组成低通滤波器

5)为什么采用U1产生2.5V的基准电压?比如 在一氧化碳情况下发生的是氧化, 电流会流入工作电极WE,这要求反电极CE相对于工作电极WE处于负电压(通常为300 mV至400 mV)。驱动CE引脚的运算放大器相对于VREF应具有±1 V的输出电压范围, 为了采用单电源供电,这个基准电压源2.5V做偏置电压

6)R4的作用以及取值:R4与传感器内部的电容组成RC电路,R4的选择需要在最快响应时间和最佳噪声之间的折中,当传感器电流流过R4时,传感器偏置电位Bias会有一个小的变化,这增加了传感器稳定时间。响应时间随R4的增加呈线性增加,噪声随R4的增加迅速减小,R4的取值一般小于100Ω,比如33Ω

7)Q1和R3的作用,电化学传感器的一个重要特性是极长的时间常数。首次上电时,输出建立最终值可能需要几分钟。当暴露于目标气体中,浓度阶跃为量程的一半时,传感器输出达到最终值的90%所需的时间可在25秒至40秒之间。如果RE与WE引脚间的电压产生剧烈幅度变化,传感器输出电流建立最终值可能需要几分钟。这个较长的时间常数也同样适用于传感器周期供电的情况。为避免启动时间过长,当电源电压降至JFET的栅极-源极阈值电压(约2.0 V)以下时, P沟道JFETQ1将RE引脚与WE引脚短接, 只要通电,P沟道JFET为开路的状态      

结合(图一)电路和气体传感器规格的进行计算

表2 典型一氧化碳传感器规格


1)跨阻放大器U2-B的输出电压为:VO = 2.5 V + IWE × R8  其中IWE是流入WE引脚的电流,R8是跨阻反馈电阻
 
CO-AX传感器的最大响应是100 nA/ppm,其最大输入范围为2000 ppm的一氧化碳。根据这些数值可知,最大输出电流为200 μA,
VO = 2.5V + 2000ppm X 100nA/ppm X R8
VO = 2.5V + 200µA X 11.5KΩ=4.8V  (1)

2)电阻R4选择33Ω时,噪声增益NG=1+ 11.5K/33=349  (2)
 
跨阻放大器的输入噪声在输出端表现为噪声增益放大,对于本电路,我们仅仅关注低频噪声,因为电化学传感器的噪声极低,LTC8332在0.1Hz至10Hz的输入电压噪声为1.1μVpp
Voutput noise= 1.1μV X NG=0.384mVpp (3)
 
由于这是极低频1/f噪声,相当于0.5ppm的气体浓度,所以很难滤除。然而,传感器响应也极低;因此可以使用截止频率为0.16 Hz的极低频率低通滤波器(R5和C6)。即使是这样的低频滤波器,与30秒的传感器响应时间相比,它对传感器响应时间的影响也可忽略

3)  系统无噪声码由峰峰值输出噪声确定,  根据(1)计算出LTC8332的最大输出电压为4.8 V

因此无噪声数:
总无噪声数= 4.8V/0.384mV=12500    (4)
 
无噪声码分辨率等于:
无噪声码分辨率= log2(12500)=13.6位     (5)

LTC8332 双通道,350KHz,  26uA, 15uV最大失调电压, 1.1uV低频噪声 的零漂运算放大器


邮箱:sales@linearin.com

电话:(86) 21 6323 3310

友情链接 百度