200 MHz, High Slew Rate, RRO, CMOS Amplifiers

General Description

The LTA805x family is true single-supply voltage feedback operational amplifiers feature high speed performance with 200 MHz of small signal bandwidth and 160 V/ μ s slew rate. The products are specified for 3.3 V and 5 V supplies, input common mode voltage range extends to 0.1 V below V_s and 1 V from V_s, and output voltage range extends to power rail, allowing wide dynamic range especially desirable in low voltage applications. The LTA805x also offer excellent signal quality of low distortion and fast settling time (13.5 ns to 0.1%), which make them ideal as buffers to single-supply ADCs.

Operating on supplies from $\pm 3.3 \text{ V}$ to $\pm 6.6 \text{ V}$ and dual supplies up to $\pm 3.3 \text{ V}$, the LTA805x are ideal for a wide range of applications, from battery-operated systems with large bandwidth requirements to high speed systems where component density requires lower power dissipation. The single version LTA8051 device is available in micro-size SOT23-5L and SOIC-8L packages. The dual LTA8052 device is offered in MSOP-8L and SOIC-8L packages. The quad LTA8054 device is offered in SOIC-14L and TSSOP-14L packages.

Features and Benefits

- High Speed and Fast Settling on 5 V
- 200 MHz, -3 dB bandwidth (G = +1)
- 160 V/μs slew rate
- 13.5 ns settling time to 0.1%
- Fully specified at 3.3 V and 5 V Supplies
- Input Common Mode Voltage 0.1 V Beyond V_{S-}, 1 V from V_{S+}
- Output Short Circuit Current 120 mA
- Operating Temperature Range -40°C to +125°C

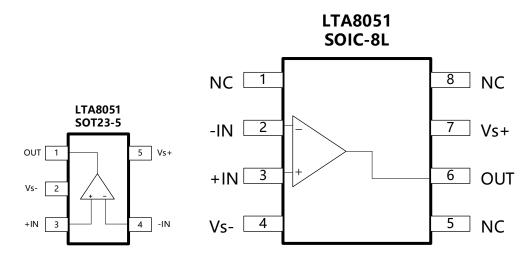
Applications

- Photodiode Amplification
- Video Buffer
- Active Filters
- Driving A/D Converters
- Motor Phase Current Sense
- Portable Equipment
- Battery-Powered Instrumentation

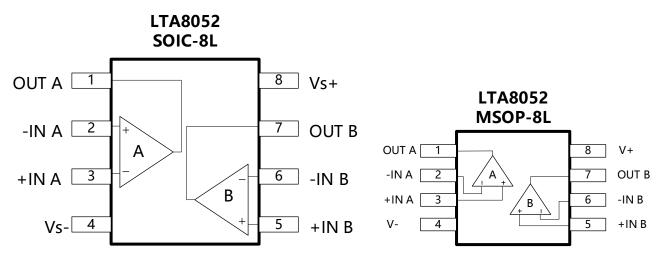
Table of Content

General Description	1
Features and Benefits	1
Applications	1
Table of Content	2
Ordering Information ⁽¹⁾	3
Pin Configuration (Top View)	4
Limiting Value	7
ESD Ratings	7
Thermal Information	7
5 V Electrical Characteristics	8
3.3 V Electrical Characteristics	
Typical Characteristics	10
Detailed Description	13
Operating Voltage	13
Rail to rail output	13
Capacitive load and stability	13
Typical Application Circuit	15
Active filter	15
Differential amplifier	15
Tape and Reel Information	16
Package Outlines	17
Important Notice	22

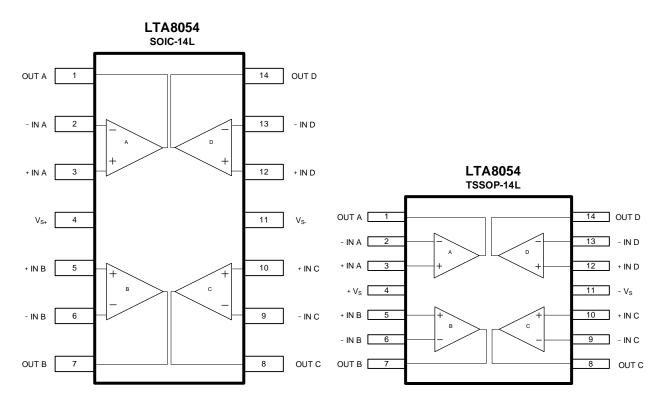
Ordering Information(1)


Part Number	Package Type	Package Size	Package Quantity	ECO Class ⁽²⁾	Mark Code ⁽³⁾
LTA8051XT5/R6	S0T23-5L	2.92 mm * 1.60 mm	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	W57
LTA8051XS8/R8	SOIC-8L	4.90 mm * 3.92 mm	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	W8051
LTA8052XS8/R8	SOIC-8L	4.90 mm * 3.92 mm	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	W8052
LTA8052XV8/R6	MSOP-8L	3.00 mm * 3.00 mm	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	W8052
LTA8054XS14/R5*	SOIC-14L	8.73 mm * 3.95 mm	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	W8054
LTA8054XT14/R6*	TSS0P-14L	4.96 mm * 4.40 mm	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	W8054

^{*} Preview Status (Not for MP stage, pls contact with us if you have request)


- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Pin Configuration (Top View)


PIN Name	S0T23-5L	SOIC-8L	Description
OUT	1	6	Amplifier output.
V _{s-}	2	4	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S^+} and V_{S^-} is from 3.3 V to 12.6 V.
+IN	3	3	Non-inverting input of the amplifier. The voltage range is from (V_{S-} – 0.1 V) to (V_{S+} – 1 V).
-IN	4	2	Inverting input of the amplifier. This pin has the same voltage range as –IN.
V _{s+}	5	7	Positive power supply. The voltage is from 3.3 V to 12.6 V. Split supplies are possible as long as the voltage between V_{S^+} and V_{S^-} is from 3.3 V to 12.6 V.
NC	-	1, 5, 8	No Connection

PIN Name	SOIC-8L / MSOP-8L	Description
OUT A	1	Amplifier A output.
-IN A	2	Inverting input A of the amplifier. The voltage range is from (V_{S-} – 0.1 V) to (V_{S+} – 1 V).
+IN A	3	Non-inverting input of the amplifier. This pin has the same voltage range as -IN A.
V _{s-}	4	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 3.3 V to 12.6 V.
+IN B	5	Non-inverting input of the amplifier. This pin has the same voltage range as -IN B.
-IN B	6	Inverting input B of the amplifier. The voltage range is from (V_{S-} – 0.1 V) to (V_{S+} – 1 V).
OUT B	7	Amplifier B output.
V _{s+}	8	Positive power supply. The voltage is from 3.3 V to 12.6 V. Split supplies are possible as long as the voltage between V_{S^+} and V_{S^-} is from 3.3 V to 12.6 V.

200 MHz, High Slew Rate, RRO, CMOS Amplifiers

PIN Name	SOIC-14L / TSSOP-14L	Description
OUT A	1	Amplifier A output.
-IN A	2	Inverting input A of the amplifier. The voltage range is from $(V_{S-} - 0.1 \text{ V})$ to $(V_{S+} - 1 \text{ V})$.
+IN A	3	Non-inverting input of the amplifier. This pin has the same voltage range as -IN A.
V _{s+}	4	Positive power supply. The voltage is from 3.3 V to 12.6 V. Split supplies are possible as long as the voltage between V_{S^+} and V_{S^-} is from 3.3 V to 12.6 V.
+IN B	5	Non-inverting input of the amplifier. This pin has the same voltage range as -IN B.
-IN B	6	Inverting input B of the amplifier. The voltage range is from $(V_{S-} - 0.1 \text{ V})$ to $(V_{S+} - 1 \text{ V})$.
OUT B	7	Amplifier B output.
OUT C	8	Amplifier C output.
-IN C	9	Inverting input C of the amplifier. The voltage range is from $(V_{S-} - 0.1 \text{ V})$ to $(V_{S+} - 1 \text{ V})$.
+IN C	10	Non-inverting input of the amplifier. This pin has the same voltage range as –IN C.
V _{s-}	11	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S^+} and V_{S^-} is from 3.3 V to 12.6 V.
+IN D	12	Non-inverting input of the amplifier. This pin has the same voltage range as –IN D.
-IN D	13	Inverting input D of the amplifier. The voltage range is from (V_{S-} – 0.1 V) to (V_{S+} – 1 V).
OUT D	14	Amplifier D output.

Limiting Value

In accordance with the Absolute Maximum Ratin System (IEC60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V _{S+} to V _{S-}	10 V
Signal Input Terminals: Voltage	V _{S-} - 0.5 V to V _{S+} + 0.5 V
Signal Input Terminals: Current	± 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{sta}	-65 °C to +150 °C
Junction Temperature, T _J	150 °C
Lead Temperature Range (Soldering 10 sec)	260 °C

ESD Ratings

Parameter	Level	UNIT
Human body model (HBM), per ESDA/JEDEC JS-001-2023 (1)	\pm 8 000	V
Charged device model (CDM), per JESD22-A115C-2010	± 1000	V

- JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

Thermal Information

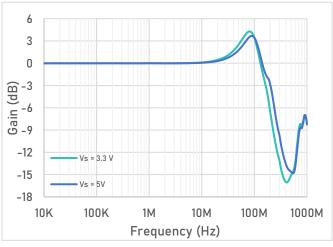
Thermal Metr	ic	Package	Level	Unit
		S0T23-5L	190	
		SOIC-8L	125	
θ_{JA}	Package Thermal Resistance	MS0P-8L	216	°C/W
		TSS0P-14L	112	
		SOIC-14L	115	

5 V Electrical Characteristics

Unless otherwise noted, V_S = ±2.5 V, V_{cm} = 0V, A_V = +1, R_F = 20 Ω ; A_V \geq +2, R_F = 470 Ω and R_L = 100 Ω .

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
DYNAMIC PERFORMANCE							
		G= +1, V_{OUT} = 0.2 V_{P-P} , R_F =20 Ω , R_L = 150 Ω		200			
24D Contil Cional		G= +1, V_{OUT} = 0.2 V_{P-P} , R_F =20 Ω , R_L = 1 $k\Omega$		240			
-3dB Small-Signal Bandwidth	f _{-3dB}	G= +2, V_{OUT} = 0.2 V_{P-P} , R_F =470 Ω , R_L = 150		85		MHz	
Danawiatii		Ω		0.0			
		G= +2, V_{OUT} = 0.2 V_{P-P} , R_F =470 Ω , R_L = 1 $k\Omega$	110		<u> </u>		
Gain-Bandwidth Product	GBP	G= +10, R_L = 150 Ω		12		MHz	
Oani-Bandwidth i Toddet	ОВІ	G= +10, R _L = 1 kΩ		12.5		141112	
Bandwidth for 0.1dB Flatness	f _{0.1dB}	G = +2, V_{OUT} = 0.2 V_{P-P} , R_F =470 Ω , R_L = 150 Ω		8		MHz	
Slew Rate	SR	G = +1, V _{IN} = 2 V _{P-P}		160/180		V/µs	
Rise Time	Tr	G = +1, V _{IN} = 0.2 V Step		2.2		ns	
Fall Time	T _f	G = +1, V _{IN} = 0.2 V Step		1.8		ns	
Settling Time to 0.1%	Ts	G= -1, R _F = 402 Ω, V _{OUT} = 2 V Step		13.5		ns	
NOISE and DISTORTION PERI	FORMANCI	<u> </u>				•	
Input Voltage Noise Density	e _n	f ≥ 1 MHz		1		nV/√Hz	
Differential Gain	DG	G = +2, R _L = 150 Ω		0.05		%	
Differential Phase	DP	G = +2, R _L = 150 Ω		0.05		0	
DC PERFORMANCE		,		1	I	1	
Input Offset Voltage	Vos			±1.8	±15	mV	
Input Offset Voltage vs	dV _{os} /	T (000) 10500		,			
Temperature	dT	T _A = -40°C to 125°C		4		μV/°C	
Input Bias Current	lΒ			0.5		pA	
Input Offset Current	I _{os}			0.2		pA	
Open-loop voltage gain	A _{VOL}	$R_L = 100 \Omega$, $V_0 = 3.3 V_{p-p}$		80	100	dB	
INPUT CHARACTERISTICS							
Input Common Mode	V _{CM}		V _{S-} -		V _{S+} -1	V	
Voltage Range	♥ CIVI		0.1		V 3+ 1	•	
Common Mode Rejection Rate	CMRR	G = +100, V _{CM} = -2.2 V to +1 V	60	80	108	dB	
OUTPUT CHARACTERISTICS		<u> </u>					
5511 61 GHARAGIERISHOS			V _{S+} -	V _{S+} -			
High Output Valtage Codes	V	No Load	80	40		\/	
High Output Voltage Swing	V _{он}	R _L = 100 Ω	V _{S+} -	V _{S+} -		mV	
		112 - 100 22	450	350			
		No Load		V _{S-} +5	V _{s-} +20		
Low Output Voltage Swing	V_{OL}			V _{S-}	V _{S-}	mV	
		R _L = 100 Ω		+100	+250		
Cl	I _{source}	0 1 1/2 000 1/2		120			
Short-circuit Current	Isink	Open loop, Vin = ± 200 mV		140		mA	
POWER SUPPLY							
Operating Supply Voltage	Vs	T _A = -40 to +125 °C	3.3		6.6	٧	
Quiescent Current (Per amplifier)	Ia			6.7	8	mA	

3.3 V Electrical Characteristics


Unless otherwise noted, Vs = ±1.65 V, Vcm = 0V, Av = +1, RF = 20 Ω ; Av \geq +2, RF = 470 Ω and RL = 100 Ω .

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
DYNAMIC PERFORMANCE						
		G= +1, V_{OUT} = 0.2 V_{P-P} , R_F =20 Ω , R_L = 150 Ω		160		
-3dB Small-Signal		G= +1, V_{OUT} = 0.2 V_{P-P} , R_F =20 Ω , R_L = 1 $k\Omega$		200		- MHz
Bandwidth	f _{-3dB}	G= +2, V_{OUT} = 0.2 V_{P-P} , R_F =470 Ω , R_L = 150 Ω		80		
		G= +2, V_{OUT} = 0.2 V_{P-P} , R_F =470 Ω , R_L = 1 $k\Omega$		105		
0: 0 1:111 0 1 1	000	G= +10, R _L = 150 Ω		12		
Gain-Bandwidth Product	GBP	G= +10, R _L = 1 kΩ		12.5		MHz
Bandwidth for 0.1dB f _{0.1dB}		G = +2, V_{OUT} = 0.2 V_{P-P} , R_F =470 Ω, R_L = 150 Ω		7		MHz
Slew Rate	SR	$G = +1, V_{1N} = 2 V_{P-P}$		150/170		V/μs
Rise Time	Tr	G = +1, V _{IN} = 0.2 V Step		4		ns
Fall Time	T _f	G = +1, V _{IN} = 0.2 V Step		4		ns
Settling Time to 0.1%	Ts	G= -1, R _F = 402 Ω, V _{OUT} = 2 V Step		16.5		ns
NOISE and DISTORTION PER	FORMANCE					
Input Voltage Noise Density	e _n	f ≥ 1 MHz		1		nV/√Hz
DC PERFORMANCE						
Input Offset Voltage	Vos			±1.5	±15	mV
Input Offset Voltage vs Temperature	dVos / dT	T _A = -40°C to 125°C		3		μV/°C
Input Bias Current	IB			0.6		pA
Input Offset Current	los			0.6		pA
Open-loop voltage gain	AvoL	$R_L = 100 \Omega$, $V_0 = 1.8 V_{p-p}$		70	80	dB
INPUT CHARACTERISTICS		_				
Input Common Mode Voltage Range	V _{СМ}		V _{S-} - 0.1		V _{S+} -1	V
Common Mode Rejection Rate	CMRR	G = +100, V _{CM} = -1.65 V to +0.35 V	55	60	90	dB
OUTPUT CHARACTERISTICS						
High Output Voltage Swing	Vall	No Load	V _{S+} - 50	V _{S+} -		- m\/
mign output voltage swing	V _{он}	R _L = 100 Ω	V _{S+} - 350	V _{S+} - 300		mV
Laure Outrook V. H		No Load		V _{S-} +3	V _{S-} +5	
Low Output Voltage Swing	V _{OL}	R _L = 100 Ω		V _{S-} +180	V _{s-} +200	mV
	I _{source}			70		
Short-circuit Current Isink		Open loop, Vin = ± 200 mV		90		mA
POWER SUPPLY	1		1	T	Т	
Operating Supply Voltage	Vs	T _A = -40 to +125 °C	3.3		6.6	V
Quiescent Current (Per amplifier)	lα			6.3	7	mA

Typical Characteristics

At T_A = 25 $^{\circ}$ C, V_S = \pm 2.5 V, R_F = 20 Ω for G = +1, R_F = 470 Ω for G = +2, G = +10, and R_L = 150 Ω , unless otherwise noted.

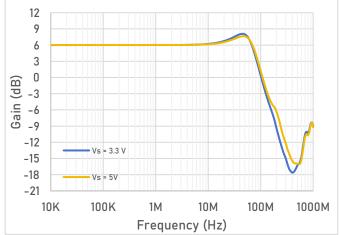
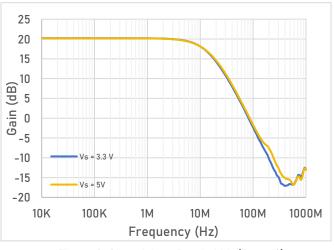



Figure 1. Closed-loop Bandwidth (G = +1)

Figure 2. Closed-loop Bandwidth (G = +2)

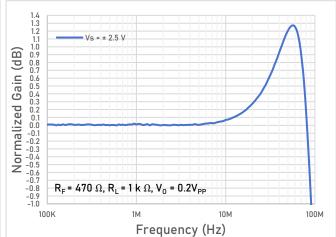
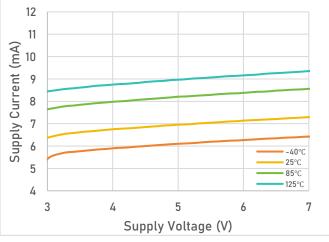
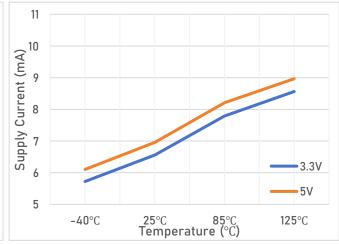



Figure 3. Closed-loop Bandwidth (G = + 10)

Figure 4. 0.1 dB Gain Flatness (G= +2)



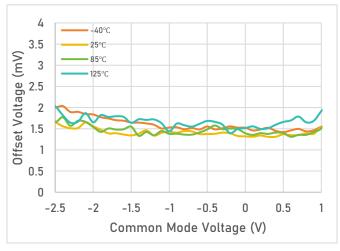

Figure 5. Supply Current per Channel vs Supply Voltage

Figure 6. Supply Current per Channel vs Temperature

200 MHz, High Slew Rate, RRO, CMOS Amplifiers

Typical Characteristics (Cont.)

At T_A = 25 °C, V_S = ±2.5 V, R_F = 20 Ω for G = +1, R_F = 470 Ω for G = +2, G = +10, and R_L = 150 Ω , unless otherwise noted.

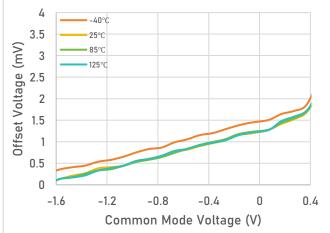
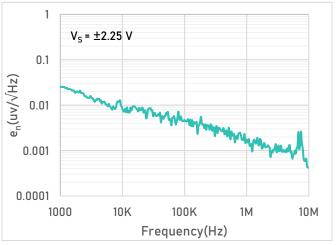



Figure 7. Offset Voltage vs Common Mode Voltage ($V_s = \pm 2.5V$) Figure 8. Offset Voltage vs Common Mode Voltage ($V_s = \pm 1.65 V$)

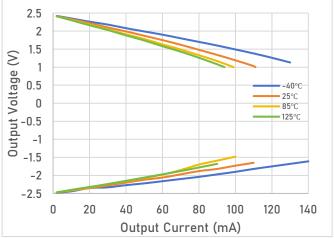
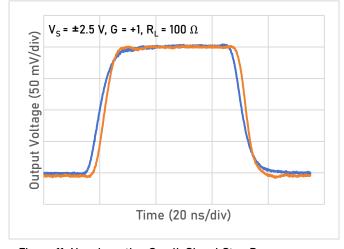
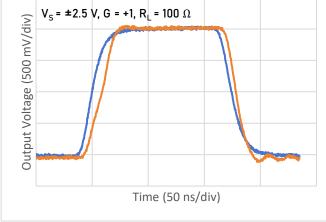



Figure 9. Input Voltage Noise vs Frequency

Figure 10. Output Voltage vs Output Current ($V_s = \pm 2.5 \text{ V}$)



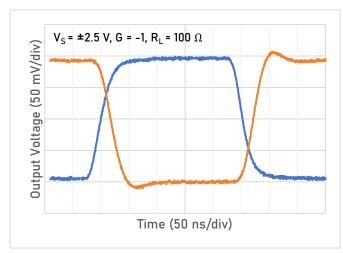

Figure 11. Non-Inverting Small-Signal Step Response

Figure 12. Non-Inverting Large-Signal Step Response

Typical Characteristics (Cont.)

At T_A = 25 °C, V_S = ±2.5 V, R_F = 20 Ω for G = +1, R_F = 470 Ω for G = +2, G= +10, and R_L = 150 Ω , unless otherwise noted.

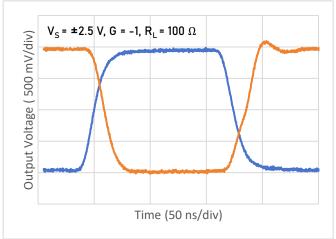


Figure 13. Inverting Small-Signal Step Response

Figure 14. Inverting Large-Signal Step Response

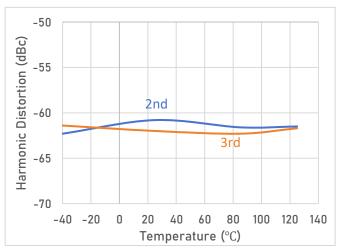


Figure 15. Harmonic Distortion vs Gain $Vs=\pm 2.5V$, f=1MHz, $V_o=2V_{pp}$

Figure 16. Harmonic Distortion vs Temperature $Vs=\pm 2.5V$, f=1MHz, $V_o=2V_{pp}$

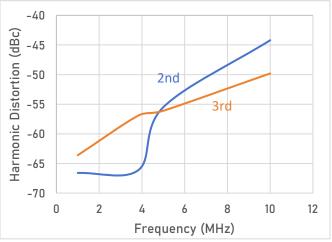


Figure 17. Harmonic Distortion vs Frequency $Vs=\pm 2.5V$, $G=\pm 1$, $V_o=2V_{pp}$

200 MHz, High Slew Rate, RRO, CMOS Amplifiers

Detailed Description

The LTA805x is a family of High speed, high slew rate, rail-to-rail output operational amplifiers specifically designed for high-speed applications. These devices operate from 3.3 V to 6.6 V at the temperature range of $-40~^{\circ}\text{C}$ to $+125~^{\circ}\text{C}$, are unity-gain stable, and suitable for a wide range of general-purpose applications. The output stage is capable of driving heavy loads with 130 mA linear output current. The input common-mode voltage range includes from $V_{S^{-}}$ -0.1 V to $V_{S^{+}}$ -1 V, and allows the LTA805x family to be used in virtually any single supply application. Rail-to-rail output swing significantly increases dynamic range, especially in low-supply applications, and makes them ideal for driving sampling analog-to-digital converters (ADCs).

The LTA805x features 200 MHz bandwidth and 160 V/ μ s slew rate, providing good ac performance at same time. DC applications are also well served with low input bias current, and an input offset voltage of ±1.8 mV typically. The typical offset voltage drift is 4 μ V/°C, over the full temperature range the input offset voltage changes only 660 μ V.

Operating Voltage

The LTA805x family is optimized for operation at voltages as low as ± 3.3 V (± 1.65 V) and up to ± 6.6 V (± 3.3 V). In addition, many specifications apply from ± 40 °C to ± 125 °C. Parameters that vary significantly with operating voltages or temperature are illustrated in the Typical Characteristics graphs.

Rail to rail output

Designed as a high speed, high slew rate, low-noise operational amplifier, the LTA805x delivers a robust output drive capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing capability. For resistive loads up to 100 Ω , the output swings typically to within 350-mV of 5 V supply rail. Different load conditions change the ability of the amplifier to swing close to the rails. For in open load, the output swings typically to within 40 mV of the positive supply rail and within 5 mV of the negative supply rail.

Capacitive load and stability

As with most amplifiers, driving larger capacitive loads than specified may cause excessive overshoot and ringing, or even oscillation. A heavy capacitive load reduces the phase margin and causes the amplifier frequency response to peak. Peaking corresponds to overshooting or ringing in the time domain. Therefore, it is recommended that external compensation be used if the LTA805x op-amps must drive a heavy capacitive load. This compensation is particularly important in the unity-gain configuration, which is the worst case for stability.

A quick and easy way to stabilize the op-amp for capacitive load drive is by adding a series resistor, $R_{\rm ISO}$, between the amplifier output terminal and the load capacitance, as shown in Figure 1. $R_{\rm ISO}$ isolates the amplifier output and feedback network from the capacitive load. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm L}$.

V_{INO} LTA805x R_{ISO} V_{OUT} C_L

Figure 1. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. The R_F provides the DC accuracy by connecting the inverting signal with the output.

The C_F and $R_{\rm ISO}$ serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

For no-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's gain, or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

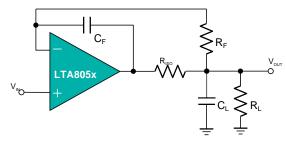


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

Typical Application Circuit

Active filter

The LTA805x family is well-suited for active filter applications that require a wide bandwidth, fast slew rate, single-supply operational amplifier. Figure 3 shows a 500 kHz, second-order, low-pass filter using the multiple-feedback (MFB) topology. The components have been selected to provide a maximally-flat Butterworth response. Beyond the cut-off frequency, roll-off is -40 dB/dec. The Butterworth response is ideal for applications that require predictable gain characteristics, such as the anti-aliasing filter used in front of an ADC.

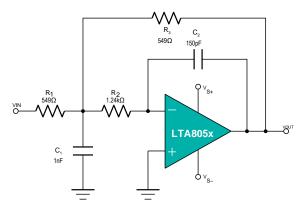


Figure 3. Second-Order, Butterworth, 500-kHz Low- Pass Filter

One point to observe when considering the MFB filter is that the output is inverted, relative to the input. If this inversion is not required, or not desired, a non-inverting output can be achieved through one of these options:

- 1. adding an inverting amplifier;
- 2. adding an additional second-order MFB stage;
- 3. using a non-inverting filter topology, such as the Sallen-Key (shown in Figure 4).

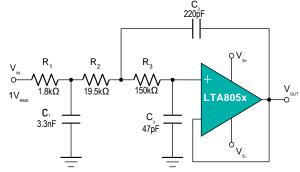
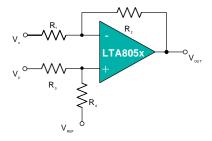


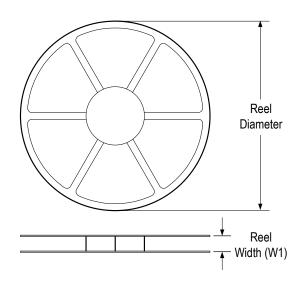
Figure 4. Configured as a Three-Pole, 20-kHz, Sallen- Key Filter

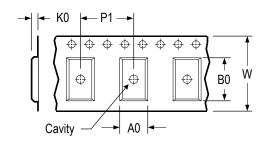
Differential amplifier

The circuit shown in Figure 5 performs the difference function. If the resistors ratios are equal $R_4/R_3 = R_2/R_1$, then:

 $V_{OUT} = (V_p - V_n) \times R_2/R_1 + V_{REF}$

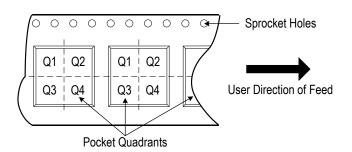



Figure 5. Differential Amplifier


200 MHz, High Slew Rate, RRO, CMOS Amplifiers

Tape and Reel Information

REEL DIMENSIONS

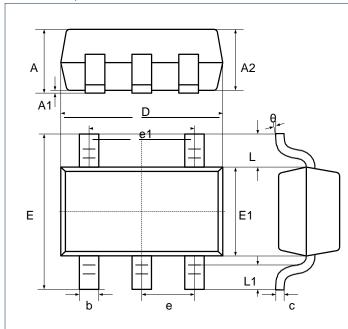


TAPE DIMENSIONS

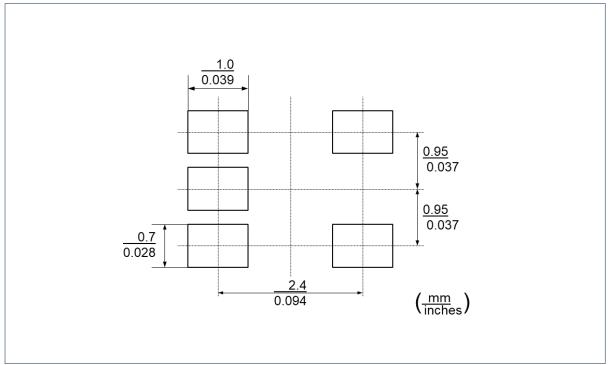
	Α0	Dimension designed to accommodate the component width
ſ	B0	Dimension designed to accommodate the component length
Ī	K0	Dimension designed to accommodate the component thickness
ſ	W	Overall width of the carrier tape
Ī	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

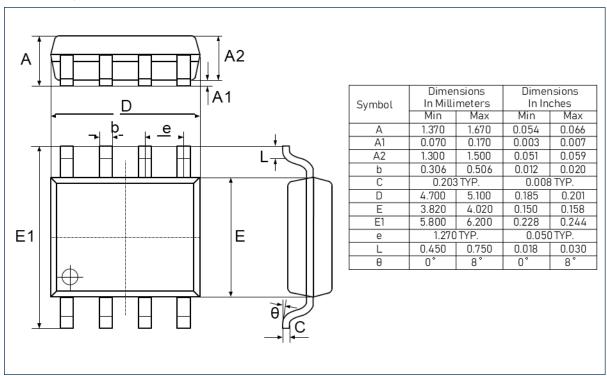
* All dimensions are nominal


Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8051XT5/R6	S0T23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3
LTA8051XS8/R8	SOIC	8	4 000	330	12.4	6.6	5.3	2.0	8.0	12.0	Q1
LTA8052XS8/R8	SOIC	8	4 000	330	12.4	6.6	5.3	2.0	8.0	12.0	Q1
LTA8052XV8/R6	MS0P	8	3 000	330	12.4	5.0	3.5	2.0	8.0	12.0	Q1
LTA8054XS14/R5	SOIC	14	2 500	330	12.4	6.5	9.5	2.0	8.0	16.0	Q1
LTA8054XT14/R6	TSS0P	14	3 000	330	12.4	6.9	5.5	1.2	8.0	16.0	Q1

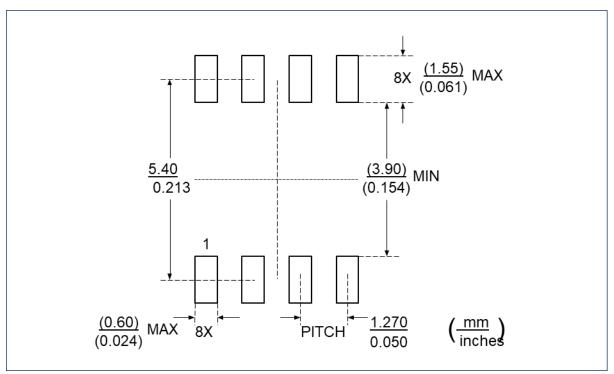
LTA8051, LTA8052, LTA8054 200 MHz, High Slew Rate, RRO, CMOS Amplifiers


Package Outlines

DIMENSIONS, SOT23-5L

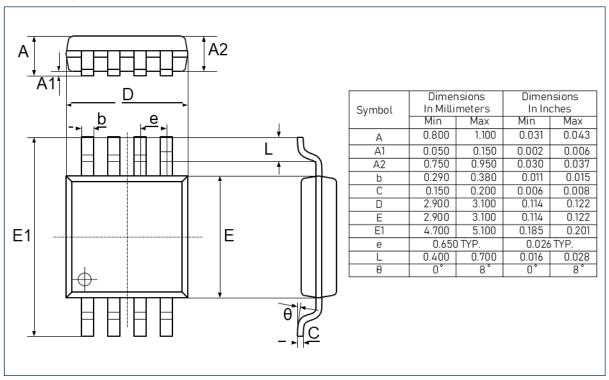

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.039	0.047	
b	0.33	0.41	0.013	0.016	
С	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
Е	2.60	3.00	0.102	0.118	
е	0.95 BSC		0.037 BSC		
e1	1.90 BSC		0.075 BSC		
L	0.60 REF		0.024 REF		
L1	0.30	0.60	0.012	0.024	
θ	0°	8°	0°	8°	

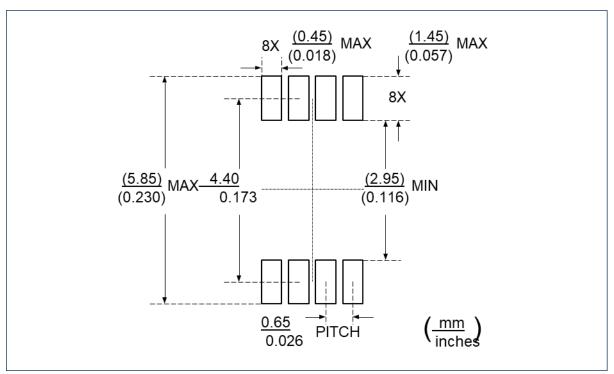
RECOMMENDED SOLDERING FOOTPRINT, S0T23-5L



Package Outlines (cont.)

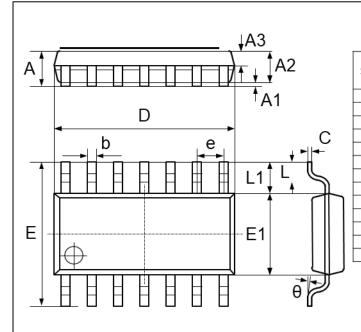
DIMENSIONS, SOIC-8L

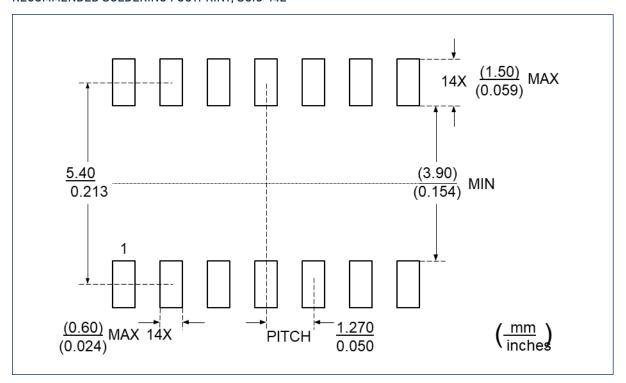

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L



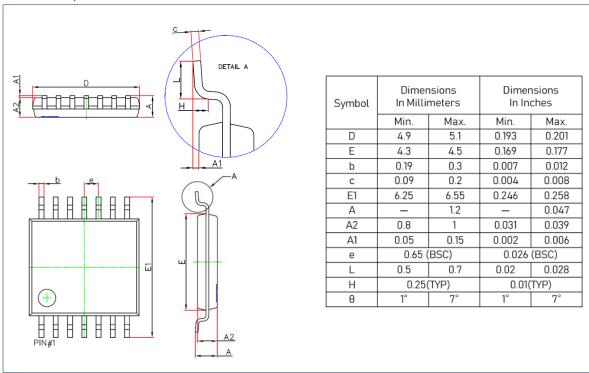
Package Outlines (cont.)

DIMENSIONS, MSOP-8L

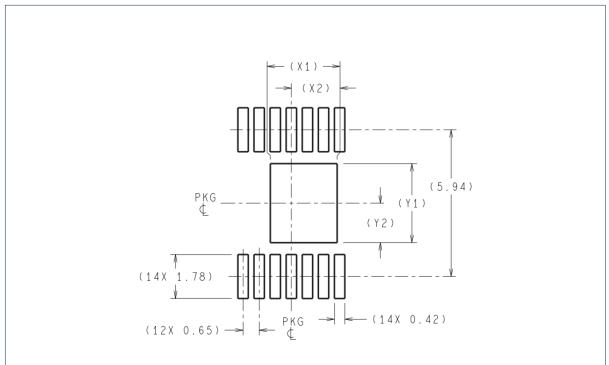

RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L


Package Outlines (Cont.)

DIMENSIONS, SOIC-14L


Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.450	1.850	0.057	0.073	
A1	0.100	0.300	0.004	0.012	
A2	1.350	1.550	0.053	0.061	
А3	0.550	0.750	0.022	0.030	
b	0.406 TYP.		0.016 TYP.		
С	0.203 TYP.		0.008 TYP.		
D	8.630	8.830	0.340	0.348	
Е	5.840	6.240	0.230	0.246	
E1	3.850	4.050	0.152	0.159	
е	1.270 TYP.		0.050 TYP.		
L1	1.040 REF.		0.041 REF.		
L	0.350	0.750	0.014	0.030	
θ	2°	8°	2°	8°	

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L



Package Outlines (Cont.)

DIMENSIONS, TSSOP-14L

RECOMMENDED SOLDERING FOOTPRINT, TSSOP-14L

200 MHz, High Slew Rate, RRO, CMOS Amplifiers

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industry 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

