General Description

The LTA8271, LTA8272 and LTA8274 (LTA827x) are a family of low power, 48 V wide supply voltage, low noise, rail-to-rail output operational amplifiers capable of operating on supplies ranging from ± 4.5 V (± 2.25 V) to ± 48 V (± 2.4 V). This new generation of high-voltage CMOS operational amplifiers, in conjunction with the LTA829x, LTA828x and LTA826x, provide a family of bandwidth, noise, and power options to meet the needs of a wide variety of applications. The LTA827x devices offer outstanding dc precision and ac performance, including low offset (± 2 mV maximum), low offset drift (± 2 μ V/°C typically), 4 MHz bandwidth, and 15 nV/ \pm Hz input voltage noise density at 1 kHz. Unique features such as differential input-voltage range to the negative supply rail, high output current (± 45 mA), high capacitive load drive of up to 1 nF, and high slew rate (3 V/ μ s) make the LTA827x high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA827x family provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection. The LTA827x are optimized for operation at voltages from +4.5 V (± 2.25 V) to +48 V (± 2.4 V) over the extended temperature range of -40 °C to +125 °C.

Features and Benefits

■ Wide Supply: ±2.25 V to ±24 V, 4.5 V to 48 V

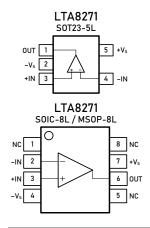
Low Offset Voltage: ±2 mV Maximum
 Low Offset Voltage Drift: ±2 μV/°C

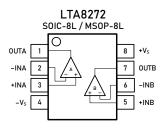
■ High Common-Mode Rejection: 112 dB

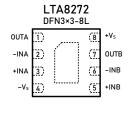
Gain Bandwidth: 4 MHz

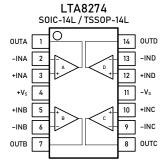
Slew Rate: 3 V/μs

Low Noise: 12 nV/√Hz at 10 kHz


Low Bias Current: ±10 pA


Rail-to-Rail Output


Applications


- Tracking Amplifier in Power Modules
- Merchant Power Supplies
- High-Side and Low-Side Current Sensing
- High Precision Comparator
- Battery-Powered Instruments
- Test and Measurement Equipment
- Multiplexed Data-Acquisition Systems
- Programmable Logic Controllers

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from V_{S-} to V_{S+} – 1.5 V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as -IN.
+V _S	Positive power supply. The voltage is from 4.5 V to 48 V. Split supplies are possible as long as the voltage between V_{S+} and V_{S-} is from 4.5 V to 48 V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 4.5 V to 48 V.
OUT	Amplifier output.
NC	No connection

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA8271XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	H71
LTA8271XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-71
LTA8271XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV71
LTA8272XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-72
LTA8272XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV72
LTA8272XF8/R10	DFN3x3-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV72
LTA8274XS14/R5	SOIC-14L	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	HV-74
LTA8274XT14/R6	TSS0P-14L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV-74

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V _{S+} to V _{S−}	60 V
Signal Input Terminals: Voltage, Current	$-V_S$ – 0.3 V to +V $_S$ + 0.3 V, ± 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	-65 to +150 ℃
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	Item	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 (1)	2 000	V
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	2 000	- V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

Electrical Characteristics

 V_S = 4.5 V to 48 V, T_A = +25 °C, V_{CM} = V_{OUT} = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

		pecified temperature range, $I_A = -40$ °C				14-14-	
Parameter OFFSET VOLTAGE	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input offset voltage	V _{os}			±0.5	±2	mV	
Offset voltage drift	V _{os} TC	T _A = -40 to +125 °C		±2		μV/°C	
Power supply	DCDD	V_S = 4.5 to 48 V, V_{CM} = 0.1 V		5		///	
rejection ratio	PSRR	T _A = -40 to +125 °C		10		· μV/V	
INPUT BIAS CURRENT	Τ						
				10			
Input bias current	I _B	T _A = -40 to +85 °C		150		pА	
		T _A = −40 to +125 °C		600			
Input offset current	ent I _{os}		5		pA		
NOISE							
Input voltage noise	V _n	f = 0.1 to 10 Hz		4.6		μV _{P-P}	
Input voltage noise	_	f = 1 kHz		15			
density	e _n	f = 10 kHz		12		- nV/√Hz	
Input current noise density		f = 1 kHz		5		fA/√Hz	
INPUT VOLTAGE							
Common-mode voltage range	V _{CM}		-V _s		+V _S -1.5	٧	
Common-mode	CMRR	V _S = 40 V, V _{CM} = 0 to 38 V		112			
		V_{CM} = 0.1 to 38 V, T_A = -40 to +125 °C V_S = 5 V, V_{CM} = 0 to 3 V		100			
rejection ratio				93		· dB	
		V _{CM} = 0.1 to 3 V, T _A = -40 to +125 °C		82			
INPUT IMPEDANCE							
I		Differential		2.0			
Input capacitance	C _{IN}	Common mode 3.5			– pF		
OPEN-LOOP GAIN							
		V _S = 40 V, V ₀ = 0.1 to 39.9 V		126			
Open-loop voltage		T _A = -40 to +125 °C	118			-	
gain	A_{VOL}	V _S = 5 V, V ₀ = 0.1 to 4.9 V		116		- dB	
		T _A = -40 to +125 °C		108		_	
FREQUENCY RESPON	'SE						
Gain bandwidth product	GBW			4		MHz	
Slew rate	SR	V _S = 40 V, G = +1, 10 V step		3		V/µs	
Total harmonic distortion + noise	THD+N	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.0003		%	
Cattling time -		To 0.1%, V _S = 40 V, G = +1, 5 V step 3.6		3.6			
Settling time	t _S	To 0.01%, V _S = 40 V, G = +1, 5 V step		7		– μs	
Overload recovery time	t _{or}	$V_{IN} \times Gain > V_{S}$		1.2		μs	

Electrical Characteristics (continued)

 V_S = 4 V to 48 V, T_A = +25 °C, V_{CM} = V_{OUT} = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

		**					
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OUTPUT		•		'	•	'	
High autout valtage avvises	M	V_S = ± 20 V, R_L = 10 k Ω		+V _S -95		\/	
High output voltage swing	V _{OH}	$V_S = \pm 20 \text{ V, R}_L = 2 \text{ k}\Omega$		+V _S -260		– mV	
Law autout valtage avving	V	V_S = ± 20 V, R_L = 10 k Ω		-V _S +60		\/	
Low output voltage swing	V _{oL}	$V_S = \pm 20 \text{ V, R}_L = 2 \text{ k}\Omega$		-V _S +245		— mV	
Short-circuit current	I _{sc}			±45		mA	
POWER SUPPLY							
Operating supply voltage	V _S	T _A = -40 to +125 °C	4.5		48	٧	
Ouisseent current (nor amplifier)	lα	V _S = 5 V		535			
Quiescent current (per amplifier)		V _S = 40 V		620		– μΑ	
THERMAL CHARACTERISTICS							
Operating temperature range	T _A		-40		+125	°C	
		S0T23-5L		190			
		MS0P-8L		201		_	
Package Thermal Resistance	θ_{JA}	SOIC-8L		125		°C/W	
		TSS0P-14L		112		_	
		SOIC-14L		115		_	

 $V_s = 30V$

48 V, 4 MHz, Low Noise, Rail-to-Rail Output Operational Amplifiers

800

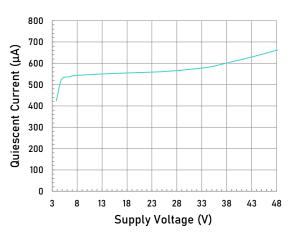
700

600

500

400

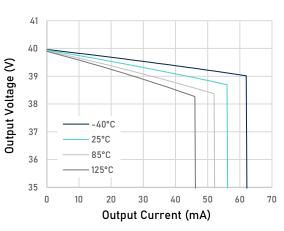
300

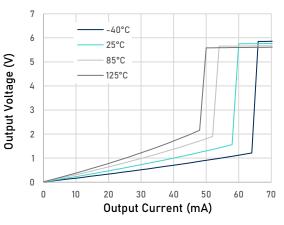

200

100

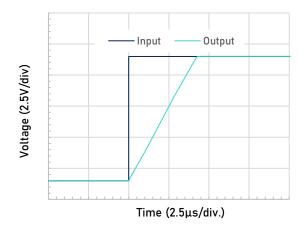
Quiescent current (µA)

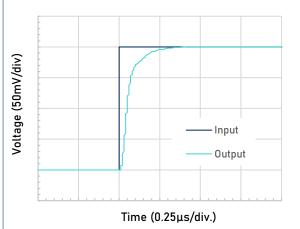
Typical Performance Characteristics


At T_A = +25 °C, V_{CM} = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted.



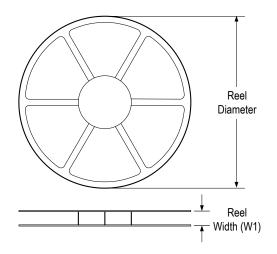
Quiescent Current as a function of Temperature


Quiescent Current as a function of Supply Voltage

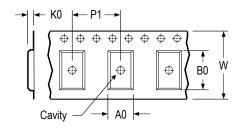

Output Voltage Swing as a function of Output Current (Sourcing, $V_S = 40 \text{ V}$)

Output Voltage Swing as a function of Output Current (Sinking, $V_S = 40 \text{ V}$)

Large-Signal Step Response(Failing)

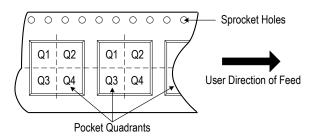


Small-Signal Step Response



Tape and Reel Information

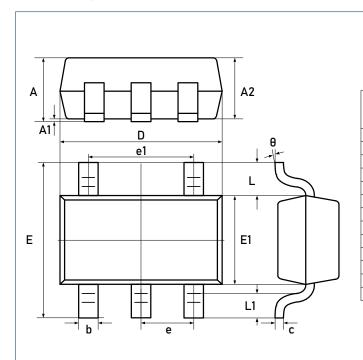
REEL DIMENSIONS



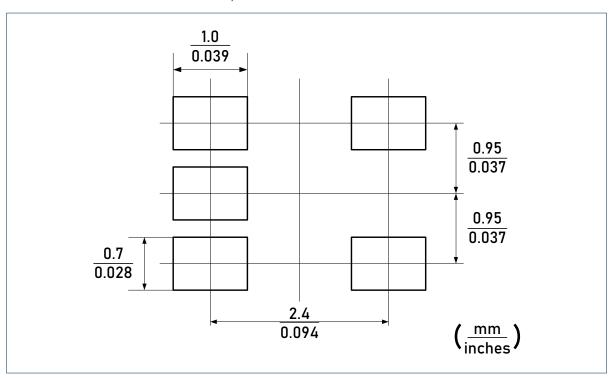
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

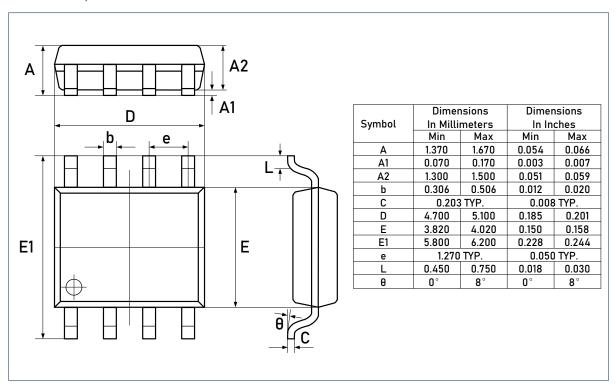

* All dimensions are nominal

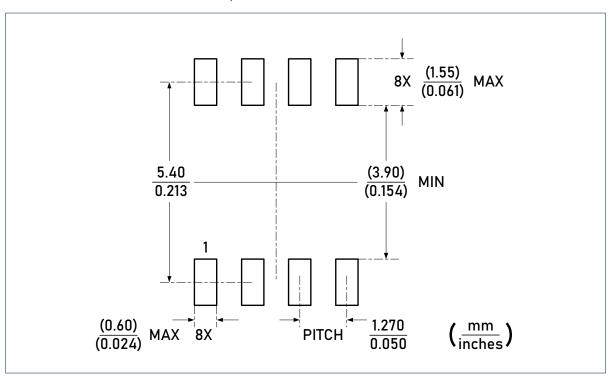
Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8271XT5/R6	SOT23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3


Package Outlines

DIMENSIONS, SOT23-5L

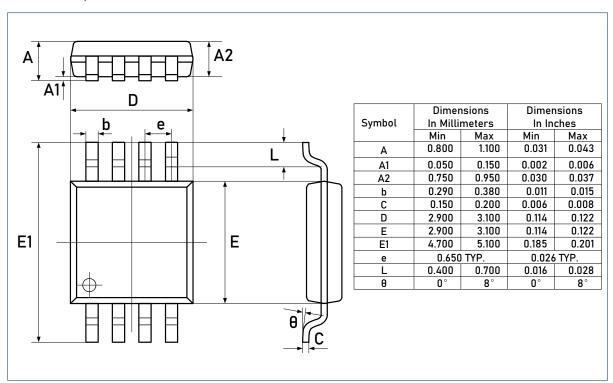
	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.039	0.047	
b	0.33	0.41	0.013	0.016	
С	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
Е	2.60	3.00	0.102	0.118	
е	0.95	BSC	0.037 BSC		
e1	1.90 BSC 0.075 BS			BSC	
L	0.60	REF	0.024	REF	
L1	0.30	0.60	0.012	0.024	
θ	0°	8°	0°	8°	

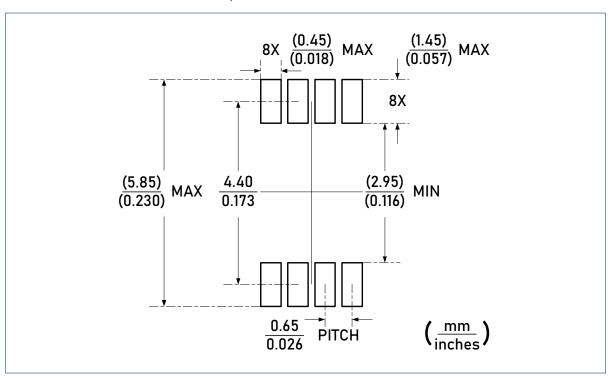

RECOMMENDED SOLDERING FOOTPRINT, SOT23-5L



Package Outlines (continued)

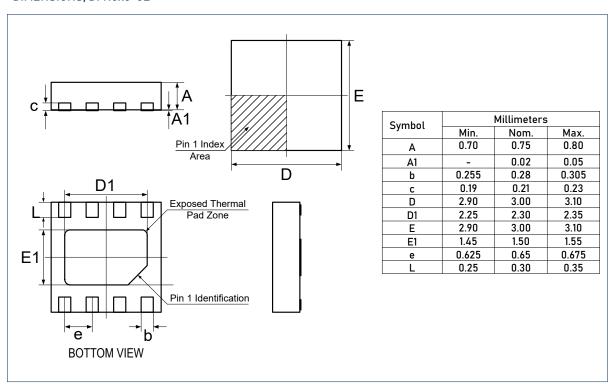
DIMENSIONS, SOIC-8L

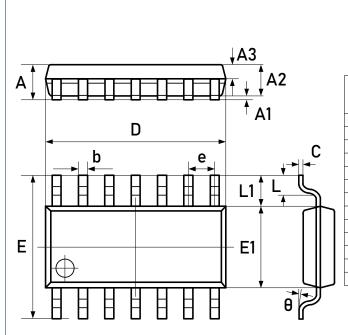

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L



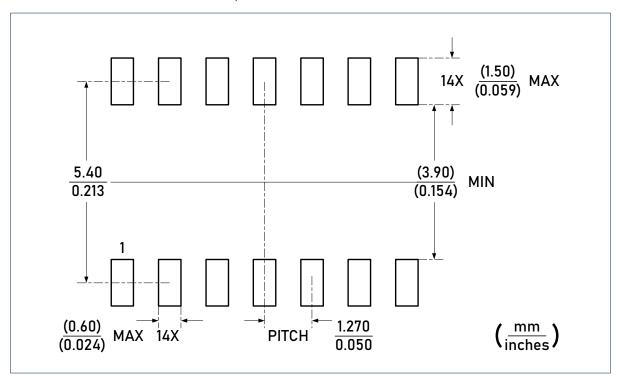
Package Outlines (continued)

DIMENSIONS, MSOP-8L


RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L

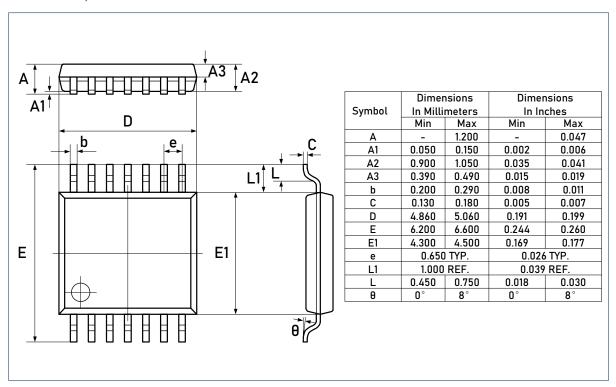

Package Outlines (continued)

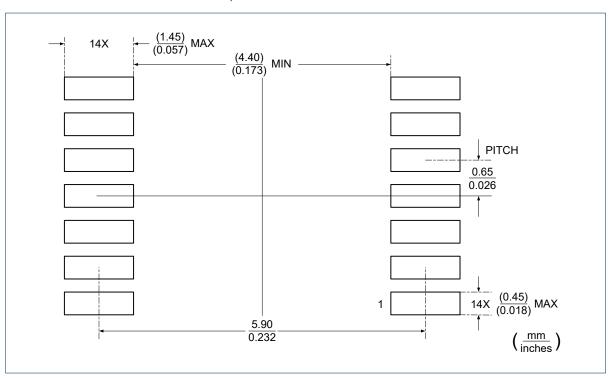
DIMENSIONS, DFN3x3-8L


Package Outlines (continued)

DIMENSIONS, SOIC-14L

	Dimer	nsions	Dimensions					
Symbol	In Milli	meters	In Inches					
	Min	Max	Min	Max				
Α	1.450	1.850	0.057	0.073				
A1	0.100	0.300	0.004	0.012				
A2	1.350	1.550	0.053	0.061				
A3	0.550	0.750	0.022	0.030				
b	0.406	TYP.	0.016 TYP.					
С	0.203	TYP.	0.008 TYP.					
D	8.630	8.830	0.340	0.348				
Е	5.840	6.240	0.230	0.246				
E1	3.850	4.050	0.152	0.159				
е	1.270 TYP.		0.050	TYP.				
L1	1.040 REF.		0.041	REF.				
L	0.350	0.750	0.014	0.030				
θ	2°	8°	2°	8°				


RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L



Package Outlines (continued)

DIMENSIONS, TSSOP-14L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

