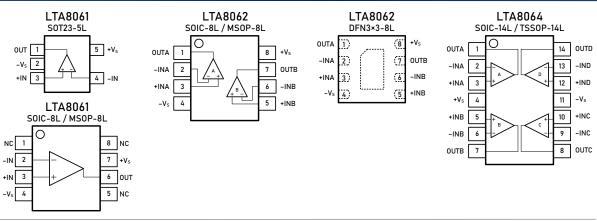
General Description

The LTA8061, LTA8062 and LTA8064 (LTA806x) are a family of micro-power, 48 V wide supply voltage, rail-to-rail output, precision operational amplifiers capable of operating on supplies ranging from +4.5 V to +48 V. This new generation of high-voltage CMOS operational amplifiers, in conjunction with the LTA809x, LTA808x and LTA807x, provide a family of bandwidth, noise, and power options to meet the needs of a wide variety of applications. The LTA806x devices offer outstanding dc precision and ac performance, including low offset ($\pm 75~\mu V$ typically), low offset drift ($\pm 1.5~\mu V$ /°C typically), 1.1 MHz bandwidth, and 22 nV/ \sqrt{Hz} input voltage noise density at 1 kHz. Unique features such as differential input-voltage range to the negative supply rail, high output current ($\pm 45~mA$), high capacitive load drive of up to 1 nF, and high slew rate (0.8 V/ μ s) make the LTA806x high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA806x family provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection. The LTA806x are optimized for operation at voltages from +4.5 V (± 2.25 V) to +48 V (± 2.4 V) over the extended temperature range of -40 °C to +125 °C.


Features and Benefits

- Wide Supply: ±2.25 V to ±24 V, 4.5 V to 48 V
- Low Offset Voltage: ±75 μV Typically
- Low Offset Voltage Drift: ±1.5 μV/°C
- High Common-Mode Rejection: 115 dB
- Gain Bandwidth: 1.1 MHz
- Slew Rate: 0.8 V/μs
- Low Noise: 22 nV/√Hz at 1 kHz
- Low Quiescent Current: 140 μA per amplifier
- Low Bias Current: ±10 pA
- Rail-to-Rail Output

Applications

- Tracking Amplifier in Power Modules
- Power Delivery: UPS, Server, and Merchant Network Power
- High-Side and Low-Side Current Sensing
- Transducer Amplifiers
- Battery-Powered Instruments
- Test and Measurement Equipment
- Multiplexed Data-Acquisition Systems
- Programmable Logic Controllers

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from $\rm V_{S-}$ to $\rm V_{S+}$ – 1.5V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as -IN.
+V _S	Positive power supply. The voltage is from 4.5V to 48V. Split supplies are possible as long as the voltage between V_{S+} and V_{S-} is from 4.5V to 48V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 4.5V to 48V.
OUT	Amplifier output.
NC	No connection

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA8061XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	H61
LTA8061XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-61
LTA8061XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV61
LTA8062XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-62
LTA8062XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV62
LTA8062XF8/R10	DFN3x3-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV62
LTA8064XS14/R5	SOIC-14L	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	HV-64
LTA8064XT14/R6	TSSOP-14L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV-64

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V _{S+} to V _{S−}	60 V
Signal Input Terminals: Voltage, Current	–V $_{\rm S}$ – 0.3 V to +V $_{\rm S}$ + 0.3 V, \pm 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	-65 to +150 ℃
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	Item	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 (1)	2 000	V
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	2 000	– v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

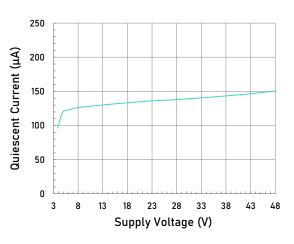
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

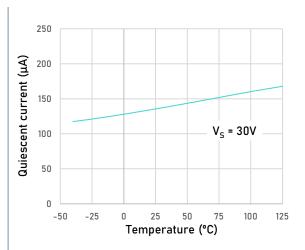
Electrical Characteristics

 V_S = 4.5 V to 48 V, T_A = +25 °C, V_{CM} = V_{OUT} = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

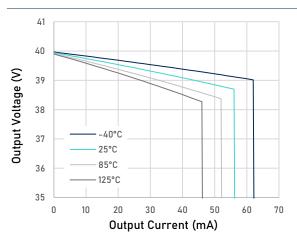
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFFSET VOLTAGE							
Input offset voltage	V _{os}			±75	±350	μV	
Offset voltage drift	V _{os} TC	T _A = -40 to +125 °C		±1.5		μV/°C	
Power supply	DCDD	V _S = 4.5 to 48 V, V _{CM} = 0.1 V		3.5		\//	
rejection ratio	PSRR	$T_A = -40 \text{ to } +125 ^{\circ}\text{C}$				μV/V	
INPUT BIAS CURRENT							
				10			
Input bias current	I_B	T _A = -40 to +85 °C			150		
		T _A = -40 to +125 °C		600			
Input offset current	I _{os}			5		pA	
NOISE							
Input voltage noise	V _n	f = 0.1 to 10 Hz		5		μV_{P-P}	
Input voltage noise density	e _n	f = 1 kHz		22		nV/√Hz	
Input current noise density	I _n	f = 1 kHz		5		fA/√Hz	
INPUT VOLTAGE							
Common-mode voltage range	V_{CM}		-V _s		+V _S -1.5	٧	
	CMRR	V _S = 40 V, V _{CM} = 0 to 38.5 V	115				
Common-mode		V_{CM} = 0.1 to 38 V, T_A = -40 to +125 °C		102		- dB	
rejection ratio		V _S = 5.0 V, V _{CM} = 0 to 3.5 V		96		- ub	
		V_{CM} = 0.1 to 3 V, T_A = -40 to +125 °C		83			
INPUT IMPEDANCE							
Input capacitance	C _{IN}	Differential		2.0		- pF	
	OIN .	Common mode 3.5		3.5		۳۰	
OPEN-LOOP GAIN							
		$V_S = 40 \text{ V}, V_0 = 0.1 \text{ to } 39.9 \text{ V}$		130			
Open-loop voltage	A_{VOL}	T _A = -40 to +125 °C		120		dB	
gain	· ·VUL	V _S = 5 V, V ₀ = 0.1 to 4.9 V		122		-	
		T _A = -40 to +125 °C		112			
FREQUENCY RESPONS	SE						
Gain bandwidth product	GBW			1.1		MHz	
Slew rate	SR	V _S = 40 V, G = +1, 10 V step 0.8			V/µs		
Total harmonic distortion + noise				%			
Settling time	To 0.1%, V _S = 40 V, G = +1, 5 V step		15			μs	
	t _S	To 0.01%, V _S = 40 V, G = +1, 5 V step 22			μ3		
Overload recovery time	t _{OR}	V _{IN} × Gain > V _S		2		μs	

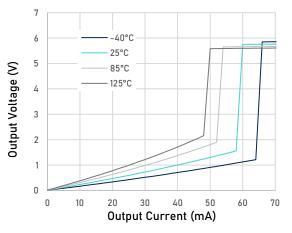
Electrical Characteristics (continued)


 V_S = 4 V to 48 V, T_A = +25 °C, V_{CM} = V_{OUT} = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

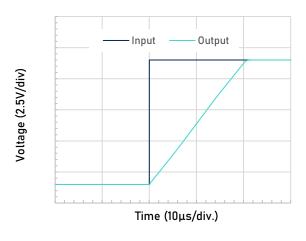

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
ОИТРИТ							
High output voltage gwing	V	V_S = ± 20 V, R_L = 10 k Ω		+V _S -100		m\/	
High output voltage swing	V _{oH}	$V_S = \pm 20 \text{ V, R}_L = 2 \text{ k}\Omega$		+V _S -270		– mV	
I am autumt valtana aurian	V	V_S = ± 20 V, R_L = 10 k Ω		-V _S +60		– mV	
Low output voltage swing	V _{oL}	V_S = ± 20 V, R_L = 2 k Ω		-V _S +250		– mv	
Short-circuit current	I _{sc}			±45		mA	
POWER SUPPLY							
Operating supply voltage	V_{S}	$T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	4.5		48	٧	
0	Ι _α	V _S = 5 V			122		
Quiescent current (per amplifier)		V _S = 40 V		140		– μΑ	
THERMAL CHARACTERISTICS							
Operating temperature range	T_A		-40		+125	°C	
		S0T23-5L		190			
		MS0P-8L		201		_	
Package Thermal Resistance	θ_{JA}	SOIC-8L		125		°C/W	
		TSS0P-14L		112		_	
		SOIC-14L		115		_	

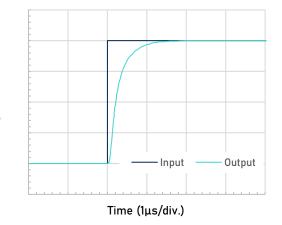
Typical Performance Characteristics


At T $_{A}$ = +25 °C, V $_{CM}$ = V $_{S}$ /2, and R $_{L}$ = 10 k Ω connected to V $_{S}$ /2, unless otherwise noted.



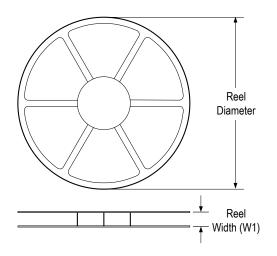
Quiescent Current as a function of Supply Voltage


Quiescent Current as a function of Temperature

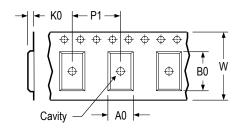


Output Voltage Swing as a function of Output Current (Sourcing, $V_S = 40 \text{ V}$)

Output Voltage Swing as a function of Output Current (Sinking, $V_S = 40 \text{ V}$)

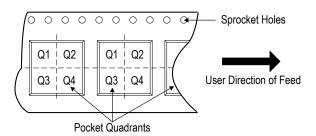

/oltage (50mV/div)

Large-Signal Step Response(Failing)


Small-Signal Step Response

Tape and Reel Information

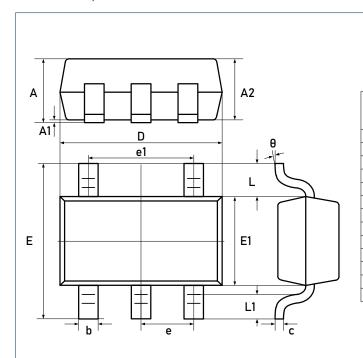
REEL DIMENSIONS



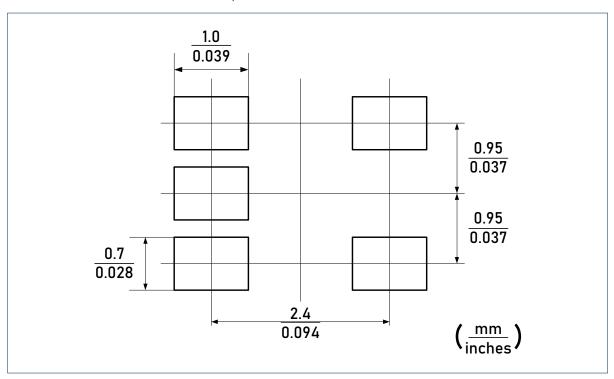
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

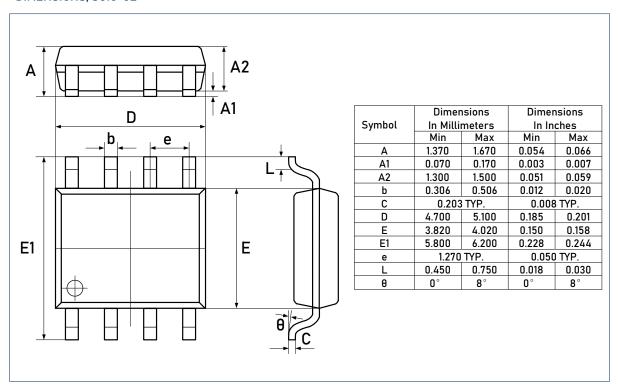

* All dimensions are nominal

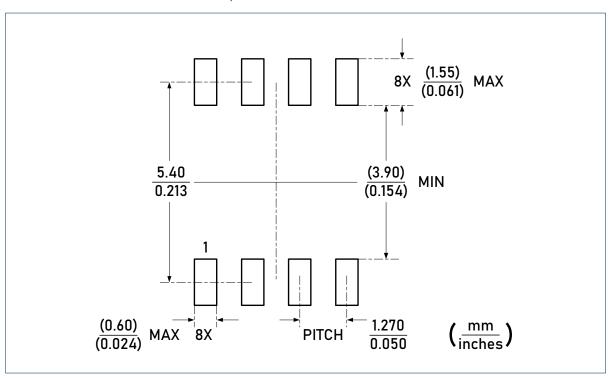
Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8061XT5/R6	S0T23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3


Package Outlines

DIMENSIONS, SOT23-5L

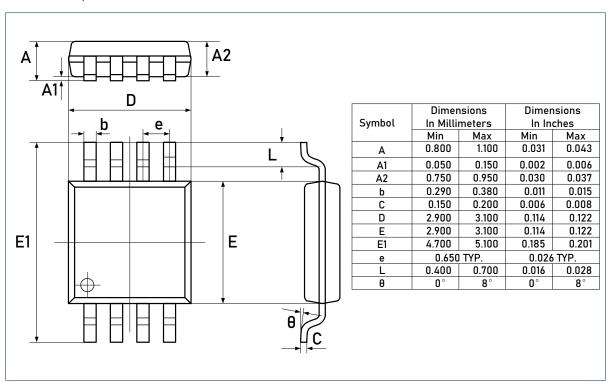
	Dimer	nsions	Dimensions				
Symbol	In Milli	meters	In Inches				
	Min	Max	Min	Max			
Α	-	1.25	-	0.049			
A1	0.04	0.10	0.002	0.004			
A2	1.00	1.20	0.039	0.047			
b	0.33	0.41	0.013	0.016			
С	0.15	0.19	0.006	0.007			
D	2.820	3.02	0.111	0.119			
E1	1.50	1.70	0.059	0.067			
E	2.60	3.00	0.102	0.118			
е	0.95	BSC	0.037 BSC				
e1	1.90	BSC	0.075	BSC			
L	0.60	REF	0.024	REF			
L1	0.30	0.60	0.012	0.024			
θ	0°	8°	0°	8°			

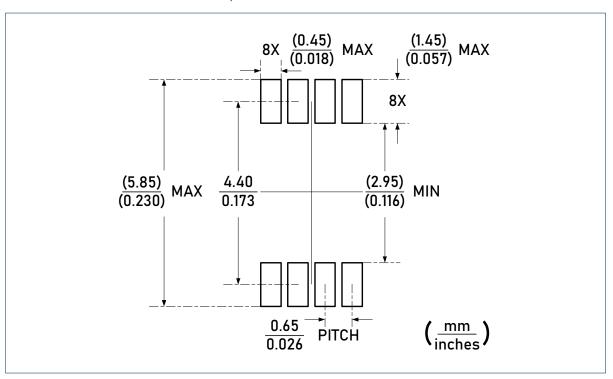

RECOMMENDED SOLDERING FOOTPRINT, S0T23-5L



Package Outlines (continued)

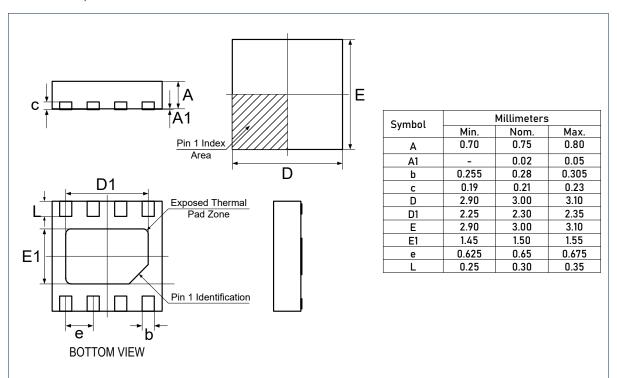
DIMENSIONS, SOIC-8L


RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L



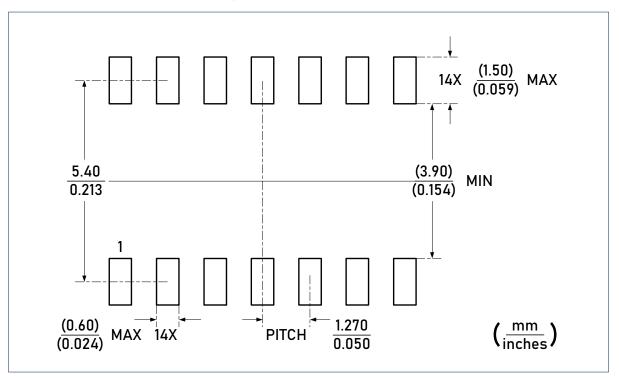
Package Outlines (continued)

DIMENSIONS, MSOP-8L


RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L

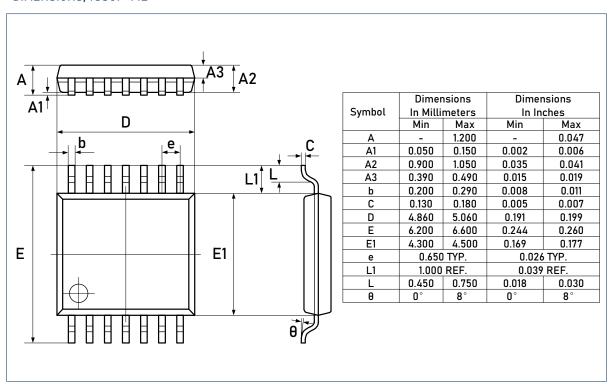

Package Outlines (continued)

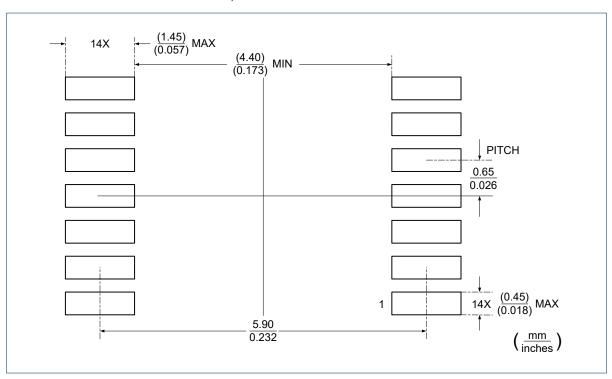
DIMENSIONS, DFN3x3-8L


Package Outlines (continued)

DIMENSIONS, SOIC-14L

	Dimer	nsions	Dimensions				
Symbol	In Milli	meters	In Inches				
	Min	Max	Min	Max			
Α	1.450	1.850	0.057	0.073			
A1	0.100	0.300	0.004	0.012			
A2	1.350	1.550	0.053	0.061			
A3	0.550	0.750	0.022	0.030			
b	0.406	TYP.	0.016 TYP.				
С	0.203	TYP.	0.008 TYP.				
D	8.630	8.830	0.340	0.348			
Е	5.840	6.240	0.230	0.246			
E1	3.850	4.050	0.152	0.159			
е	1.270 TYP.		0.050	TYP.			
L1	1.040 REF.		0.041	REF.			
L	0.350	0.750	0.014	0.030			
θ	2°	8°	2°	8°			


RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L



Package Outlines (continued)

DIMENSIONS, TSSOP-14L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

