20 V Input Voltage, 1 A, High Speed LDOs

LTP829

General Description

The LTP829 is low noise, LDO Voltage Regulators with enable function that output voltages of 3.3 V, 5 V. These characteristics, combined with low noise and good PSRR with low dropout voltage, make this device ideal for portable consumer applications. The LTP829 can operate with up to 20 V input. The Devices are available in SOT-223, ESOP-8, DFN2 \times 2-6, DFN3 \times 3-8 and SOT89-3.

Features

- Wide Input Voltage Range: up to 20 V
- Max Output Current: 1 A
- Output Voltage Accuracy: ±2%
- Adjustable Output Voltage Options: V_{FB} = 0.6 V
- Fixed Output Voltage: from 3.3 V, 5 V
- Other Output Voltage Options Available on Request
- Standby Current: 160 μA (Typical)
- Dropout Voltage: 0.5 V at 1A when $V_{OUT} \ge 2 V$
- High Ripple Rejection: 80 dB at 1 kHz
- Available Packages: SOT-223, ESOP-8, SOT89-3, DFN2×2-6, DFN3×3-8

Applications

- Consumer and Industrial Equipment Point of Regulation
- Switching Power Supply Post Regulation
- Battery Chargers
- Hard Drive Controllers

Order Information

Model	Package	Ordering Number Note1	Packing Option
	S0T223	LTP829-xxXT3	Tape and Reel, 2500
	DFN2×2-6	LTP829-ADJF6	Tape and Reel, 3000
LTP829	DFN3×3-8	LTP829-ADJF8	Tape and Reel, 4000
	ESOP-8	LTP829-ADJS8	Tape and Reel, 4000
	S0T89-3	LTP829-xxXT4	Tape and Reel, 1000

Note: xx stands for output voltage, e.g. if xx = 18, the output voltage is 1.8 V; if xx = 30, the output voltage is 3.0 V. Adjustable Output Voltage, Rang: 0.6 V to 3.6 V.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved.

Pin Configuration (Top View)

		Package		Complete 1	Franctica		
S0T-223	DFN2×2-6	DFN3×3-8	SOT89-3	ESOP-8	Symbol	Function	
1	3	7	1	5,6,7,8	GND	Ground.	
2	1	3, 4	3	3	OUT	Output pin.	
3	6	1, 2	2	2	IN	Power supply input pin.	
	4	8		1	EN	Enable pin.	
	2	6		4	FB	This pin is used as an input to the control loop error amplifier and is used to set the output voltage of the LDO.	
	5	5			NC	Not connect.	
	Exposed Pad	Exposed Pad		Exposed Pad	GND	Exposed thermal pad. Connect to GND for best thermal performance.	

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved.

LTP829 20 V Input Voltage, 1 A, High Speed LDOs

Block Diagram

Functional Description

Enable

The LTP829 delivers the output power when it is set to enable state. When it works in disable state, there is no output power and the operation quiescent current is almost zero. The enable pin (EN) is active high.

Shutdown

Turn off the device by forcing the EN pin to drop below $V_{EN(LO)}$. If shutdown capability is not required, connect EN to IN. The LTP829 has an internal pulldown MOSFET that connects an $R_{PULLDOWN}$ resistor to ground when the device is disabled. The discharge time after disabling depends on the output capacitance (C_{OUT}) and the load resistance (R_L) in parallel with the pulldown resistor ($R_{PULLDOWN}$). Formula 1 calculates the time constant:

 τ = (R_{PULLDOWN} × R_L) / (R_{PULLDOWN} + R_L)

(1)

Over-Temperature Protection

The over-temperature protection function will turn off the P-MOSFET when the junction temperature exceeds 150°C (typical). Once the junction temperature cools down by approximately 20°C the regulator will automatically resume operation.

Current-Limit Protection

The LTP829 provides current limit function to prevent the device from damages during over-load or shortedcircuit condition. This current is detected by an internal sensing transistor.

Recommended Operating Condition

Parameter	Symbol	Rating	Unit
Input Voltage	V _{IN}	up to 20	V
Output Current	I _{out}	0 to 1	А
Operating Ambient Temperature	T _A	-40 to 85	°C
Effective Input Ceramic Capacitor Value ⁽¹⁾	CIN	1 to 10	μF
Effective Output Ceramic Capacitor Value ⁽¹⁾	C _{OUT}	1 to 10	μF
Input and output Capacitor Equivalent Series Resistance(ESR)	ESR	5 to 100	mΩ

Notes: (1) The capacitor is a chip capacitor, and larger capacitance value is required if electrolytic capacitor is used.

Absolute Maximum Ratings

Parameter	Rating		Unit
IN pin to GND pin ⁽¹⁾	-0.3 to 24		V
OUT pin to GND pin	0.65 to 6		٧
Chip Enable Input	-0.3 to 22		V
Maximum Junction Temperature	150		°C
Storage Temperature	-65 to 150		۵°
	HBM ⁽²⁾	\pm 2000	N N
	CDM ⁽²⁾	\pm 1500	v
Latch up Current Maximum Rating ⁽³⁾	200		mA
	S0T223	80	
	SOT89-3	120	
Thermal Resistance (Junction to Ambient) ⁽⁴⁾	ESOP-8	60	°C/W
	DFN2×2-6	105	5,11
	DFN3×3-8	65	

Notes:

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.

(2) This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per EIA/JESD22-A114. CDM tested per JESD22-C101.

(3) Latch up Current Maximum Rating tested per JEDEC78.

(4)This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking.

Caution

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. LINEARIN recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

LINEARIN reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact LINEARIN sales office to get the latest datasheet.

Electrical Characteristics

(VIN= VOUT +1 V, IOUT=10 mA, Ta= 25 °C, CIN= COUT=1.0 uF, unless otherwise noted)

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit
Input Voltage Operation Range	V _{IN} ⁽¹⁾					20	V
Quitmut Valtana	V	T _A =25°C		-2%		+2%	V
oulput vollage	VOUT	$-40^{\circ}C \leq T_{A} \leq 85^{\circ}C$		-3%		+3%	v
Reference Voltage	V_{FB}	T _A =25°C			0.6		۷
Line Regulation	R_{egLINE}	$2.5~V \le V_{IN} \le 20~V$, I	l _{out} = 10 mA		0.05	0.2	%V _{out}
			$0.65 \text{ V} \leq \text{V}_{\text{OUT}} < 1 \text{V}$			2500	
		-40°C ≤ T₄ ≤ 125°C	$1 \text{ V} \leq \text{V}_{\text{OUT}} < 1.5 \text{ V}$			2000	
Dropout Voltage	V _{DROP} ⁽³⁾	$V_{IN} \ge 2.5 V$	$1.5 \text{ V} \leq \text{V}_{\text{OUT}} < 2 \text{ V}$			1000	mV
		I _{OUT} = 1 A	$2 \text{ V} \leq \text{V}_{\text{OUT}} \leq 2.5 \text{ V}$			800	
			$2.5 \text{ V} \leq \text{V}_{\text{OUT}} < 5.5 \text{ V}$		450	598	
Load Regulation	R Lava	$1 \text{ mA} \leq I_{\text{OUT}} \leq 800 \text{ n}$	nA,			40	mV
	regLOAD	V _{IN} = V _{OUT} + 1 V				40	
Current Limit	I _{LMT}	$V_{IN} = V_{OUT} + 1 V$		1.04	1.3		Α
Short Circuit Current Limit	I _{SHORT}	V _{OUT} = 0 V		350			mA
Quiescent Current	Iα	I _{out} = 0 mA			160	190	μA
Standby Current	I _{Q_OFF}	V _{EN} = 0 V, T _A = 25°C			0.1	1	μA
EN Pin Threshold Voltage	V_{ENH}	EN Input Voltage "H	ł"	1.2			V
EN Pin Threshold Voltage	V_{ENL}	EN Input Voltage "L	и -			0.4	۷
EN Pin Current	I _{EN}	$V_{EN} \leq V_{IN} \leq 20 \ V$			1		μA
			f = 1 kHz		80		
Power Supply Rejection Ratio	PSRR	V _{IN} = V _{OUT} + 1 V, I _{OUT} = 50 mA.	f = 100 kHz		70		dB
		00 mA,	f = 1 MkHz		65		
Active Output Discharge Resistance (A option only)	R _{LOW}	V_{IN} = 4 V, V_{EN} = 0 V			70		Ω
Thermal Shutdown Temperature	T _{SD}	V_{IN} = 4 V, V_{EN} = 0 V			150		°C
Thermal Shutdown Hysteresis	T _{SDH}	Increasing from T _A	= +25°C ⁽²⁾		25		°C
Output Noise Voltage	e _N	V _{IN} = V _{OUT} + 1 V, I _{OUT} f = 10 Hz to 100 kHz V _{OUT} = 3 V, C _{OUT} = 1 µ	= 1 mA, , IF ⁽²⁾		60		μV _{RMS}

Notes:

(1) Here V_{IN} means internal circuit can work normal. If V_{IN} < V_{OUT}, Output voltage follow V_{IN} (I_{OUT} = 1 mA), circuit is safety.

(2) Guaranteed by design and characterization. not a FT item.

(3) V_{DROP} FT test method: test the V_{OUT} voltage at V_{SET} + V_{DROP(MAX)} with 1A output current.

©Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

20 V Input Voltage, 1 A, High Speed LDOs

LTP829

0.0s

停止

僮山

• •

停止

EX

•

4 .

X

Typical Performance Characteristics

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

T_{ON} and T_{OFF}

(V_{IN} = V_{OUT} + 1 V, I_{OUT} = 0 mA, C_{IN} = C_{OUT} = 10 μ F)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved.

P-7

Typical Performance Characteristics

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

Input Transient Response

(V_{IN} = V_{OUT} + 1 V, I_{OUT} = 10 mA, C_{OUT} = 10 μ F, t = 10 μ s, V_{IN} jump from 6 V to 18 V)

Input Transient Response (V_{OUT} = 5.0 V, I_{OUT} = 1 mA)

2. VOLD

Input Transient Response (V_{OUT} = 1.8 V, I_{OUT} = 1 mA)

Input Transient Response (V_{OUT} = 3.3 V, I_{OUT} = 1 mA)

İNEARIN

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved.

Typical Performance Characteristics

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

Load Transient Response

(V_{IN} = V_{OUT} + 1 V, t = 10 μ s, I_{OUT} jump from 1 mA to 1000 mA)

Load Transient Response (V_{OUT} = 1.8 V, I_{OUT} = 1~1000 mA)

Load Transient Response (V_{OUT} = 3.3 V, I_{OUT} = 1~1000 mA)

Load Transient Response (V_{OUT} = 5.0 V, I_{OUT} = 1~1000 mA) |

©Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

Load Transient Response (V_{OUT} = 1.8 V, I_{OUT} = 1~1000 mA)

Load Transient Response (V_{OUT} = 3.3 V, I_{OUT} = 1~1000 mA)

LTP829 20 V Input Voltage, 1 A, High Speed LDOs

P-8

Typical Performance Characteristics

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

Temperature Characteristics

Output Voltage VS. Temperature (V_{OUT} = 5.0V)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Typical Performance Characteristics

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

PSRR

(V_{IN} = V_{OUT} + 1 V, I_{OUT} = 0 mA, C_{OUT} = 10 μ F)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

20 V Input Voltage, 1 A, High Speed LDOs

LTP829

Application Circuits

Functional Description

Input and Output Capacitor Selection

The LTP829 requires an output capacitance of 1µF or larger for stability. Use X5R-type and X7R-type ceramic capacitors because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature. When choosing a capacitor for a specific application, pay attention to the DC bias characteristics for the capacitor. Higher output voltages cause a significant derating of the capacitor. Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several inches from the input power source.

Application of Electrolytic Capacitor

If the electrolytic capacitor should be used as input and output capacitor, the capacitance of the capacitor must be greater.

Enable

The LTP829 has an EN pin to turn on or turn off the regulator, When the EN pin is in logic high, the regulator will be turned on. The shutdown current is almost 0µA typical. The EN pin may be directly tied to VIN to keep the part on. The Enable input is CMOS logic and cannot be left floating.

Setting the Output Voltage

The LTP829 develops a 0.6 V reference voltage, VFB, between the output and the adjust terminal. This voltage is applied across resistor R1 to generate a constant current. The current IADJ from the ADJ terminal could introduce DC offset to the output. Because, this offset is very small (about 0.1 μ A), it can be ignored. The constant current then flows through the output set resistor R2 and sets the output voltage to the desired level. Equation 2 is used for calculating V_{OUT}:

$$V_{OUT} = V_{FB} \times (1 + R_1/R_2)$$
⁽²⁾

Although I_{ADJ} is very small, $R_1 + R_2$ should be limited to less than 100k Ω for optimum performance.

Dropout Voltage

The LTP829 uses a PMOS pass transistor to achieve low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO} scales approximately with output current because the PMOS device behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as $(V_{IN} - V_{OUT})$ approaches dropout operation.

P-11

P-12

Functional Description

Thermal Shutdown

Thermal shutdown protection disables the output when the junction temperature rises to approximately 150°C Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the junction temperature cools to approximately 125°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the LDO from damage as a result of overheating. Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product of the $(V_{IN} - V_{OUT})$ voltage and the load current. For reliable operation, limit junction temperature to 125°C maximum.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance. For recommended operating condition specifications the maximum junction temperature is 125°C and T_A is the ambient temperature. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. The maximum power dissipation depends on the operating ambient temperature for fixed TJ(MAX) and thermal resistance, θ_{JA} .

Package Dimension

SOT-223

Unit: mm

	Dimensions In Millimeters			
Symbol	Min	Max		
А	1.520	1.800		
A1	0.000	0.100		
A2	1.500	1.700		
b	0.660	0.820		
С	0.250	0.350		
D	6.200	6.400		
D1	2.900	3.100		
E	6.830	7.070		
E1	3.300	3.700		
е	2.300BSC			
e1	4.500	4.700		
L	0.900	1.150		
θ	0°	10°		

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. ©Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

LTP829 20 V Input Voltage, 1 A, High Speed LDOs

Package Dimension

ESOP-8

Symbol	Dimensions In Millimeters		
	Min	Max	
А		1.750	
A1	0.100	0.225	
A2	1.300	1.500	
b	0.390	0.480	
с	0.210	0.260	
D	4.700	5.100	
D1	3.200	3.400	
E	5.800	6.200	
E1	3.700	4.100	
E2	2.300	2.500	
е	1.270BSC		
L	0.500	0.800	
θ	0°	8°	

<u>j</u>nearin

LTP829 20 V Input Voltage, 1 A, High Speed LDOs

İNEARIN

Package Dimension

SOT-89

P-15

Package Dimension

$DFN3 \times 3-8$

Cumhal	Dimensions In Millimeters		
Symbol	Min	Max	
А	0.700	0.800	
A1	0.000	0.050	
A2	0.203REF		
b	0.180	0.300	
D	2.900	3.100	
D1	2.200	2.400	
E	2.900	3.100	
E1	1.400	1.600	
е	0.650BSC		
L	0.375	0.575	
k	0.200		

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Package Dimension

DFN2×2-6

Complex	Dimensions In Millimeters		
Symbol	Min	Max	
А	0.700	0.900	
A1	0.000	0.050	
A2	0.203REF		
b	0.180	0.300	
D	1.900	2.100	
D1	1.100	1.300	
E	1.900	2.100	
E1	0.600	0.800	
е	0.650BSC		
L	0.250	0.450	
k	0.200		

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

