Industry-Standard Dual Operational Amplifier

General Description

The LTA2904H is a dual-channel industry-standard operational amplifier with supply voltage up to +40 V. The LTA2904H offers outstanding dc precision and ac performance, including low offset (± 0.8 mV typically), low offset drift ($\pm 7~\mu\text{V}/^{\circ}\text{C}$ typically), 1.1 MHz bandwidth, and 40 nV/ $\sqrt{\text{Hz}}$ input voltage noise density at 1 kHz. Unique features such as differential input-voltage range to the negative supply rail, high output current ($\pm 30~\text{mA}$), high capacitive load drive of up to 0.1 nF, and high slew rate (0.5 V/ μ s) make the LTA2904H a high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA2904H provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter and high electro-static discharge (ESD) protection (2000V for HBM). The LTA2904H is optimized for operation at voltages from +4.5 V (± 2.25 V) to +40 V (± 20 V) over the extended temperature range of -40 °C to +125 °C.

Features and Benefits

Wide Supply: ±2.25 V to ±20 V, 4.5 V to 40 V

Low Offset Voltage: ±0.8 mV Typically

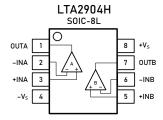
Low Offset Voltage Drift: ±7 μV/°C

High Common-Mode Rejection: 80 dB

Gain Bandwidth: 1.1 MHz

Slew Rate: 0.5 V/μs

Low Noise: 40 nV/√Hz at 1 kHz


Low Quiescent Current: 300 μA per amplifier

■ Low Bias Current: ±10 nA

Applications

- Merchant network and server power supply units
- Power Delivery: UPS, Server, and Merchant Network Power
- Programmable Logic Controllers
- Multi-function printers
- Power supplies and mobile chargers
- Motor control: AC induction, brushed DC, Brushless DC, high-voltage, low-voltage, permanent magnet, and stepper motor
- Desktop PC and motherboard
- Indoor and outdoor air conditioners
- Washers, dryers, and refrigerators
- AC inverters, string inverters, central inverters, an voltage frequency drives
- Electronic point-of-sale systems

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from $\rm V_{S-}$ to $\rm V_{S+}$ – 2 V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as -IN.
+V _S	Positive power supply. The voltage is from 4.5 V to 40 V. Split supplies are possible as long as the voltage between V_{S+} and V_{S-} is from 4.5 V to 40 V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 4.5 V to 40 V.
OUT	Amplifier output.
NC	No connection

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA2904HXS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV2904

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V _{S+} to V _{S-}	60 V
Signal Input Terminals: Voltage, Current	–V $_{\rm S}$ – 0.3 V to +V $_{\rm S}$ + 0.3 V, ± 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	-65 to +150 ℃
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	Item	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 ⁽¹⁾	2 000	
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	1 500	– v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

Electrical Characteristics

 V_S = 4.5 V to 40 V, T_A = +25 °C, V_{CM} = V_{OUT} = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFFSET VOLTAGE							
Input offset voltage	V _{os}			±0.8	±3	mV	
Offset voltage drift	V _{os} TC	T _A = -40 to +125 °C		±7		μV/°C	
Power supply	PSRR	V_{S} = 4.5 to 40 V, V_{CM} = 0.1 V		5		— μV/V	
rejection ratio	FJKK	T _A = -40 to +125 °C		10		— μ ν /ν	
INPUT BIAS CURRENT							
				10		_	
Input bias current	I_B	T _A = -40 to +85 °C		90		nA	
		T _A = -40 to +125 °C		250			
Input offset current	I _{os}			5		nA	
NOISE							
Input voltage noise	V_n	f = 0.1 to 10 Hz		5		$\mu V_{\text{P-P}}$	
Input voltage noise density	e _n	f = 1 kHz		40		nV/√Hz	
Input current noise density	I_n	f = 1 kHz		5		fA/√Hz	
INPUT VOLTAGE							
Common-mode voltage range	V _{CM}		-V _s		+V _S -2	٧	
Common-mode rejection ratio	CMRR	V_{CM} = 0.1 to 38 V, T_A = -40 to +125 °C		80		dB	
INPUT IMPEDANCE							
In most and a little and a	_	Differential		2		=	
Input capacitance	C _{IN}	Common mode		3.5		– pF	
OPEN-LOOP GAIN							
		V _S = 40 V, V ₀ = 0.1 to 39.9 V	126				
Open-loop voltage		T _A = -40 to +125 °C		118		- -	
gain	A_{VOL}	$V_S = 5 \text{ V}, V_0 = 0.1 \text{ to } 4.9 \text{ V}$				– dB	
		T _A = -40 to +125 °C		108		_	
FREQUENCY RESPONS	SE .						
Gain bandwidth product	GBW			1.1		MHz	
Slew rate	SR	V _S = 40 V, G = +1, 10 V step		0.5		V/µs	
Total harmonic distortion + noise	THD+N	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.001		%	
Sattling time		To 0.1%, V _S = 40 V, G = +1, 5 V step		16		– μs	
Settling time	t _S	To 0.01%, V _S = 40 V, G = +1, 5 V step		22	22		
Overload recovery time	t _{OR}	$V_{IN} \times Gain > V_{S}$		10		μs	

Electrical Characteristics (continued)

 V_S = 4.5 V to 40 V, T_A = +25 °C, V_{CM} = V_{OUT} = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OUTPUT	·		•	•	•	
High autout valtage avring	V _{oH}	V_S = ± 20 V, R_L = 10 k Ω		+V _S -1		– V
High output voltage swing		$V_S = \pm 20 \text{ V, R}_L = 2 \text{ k}\Omega$		+V _S -1.2		
	V _{OL}	V_S = ± 20 V, R_L = 10 k Ω		-V _S +60		– mV
Low output voltage swing		V_S = ± 20 V, R_L = 2 k Ω		-V _S +250		
Short-circuit current	I _{sc}			±45		mA
POWER SUPPLY						
Operating supply voltage	V _s	T _A = -40 to +125 °C	4.5		40	V
Quiescent current (nor amplifier)	l _Q	V _S = 5 V		280		— μA
Quiescent current (per amplifier)		V _S = 40 V		300		
THERMAL CHARACTERISTICS						
Operating temperature range	T _A		-40		+125	°C
Package Thermal Resistance	θ_{JA}	SOIC-8L		125		°C/W