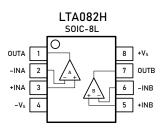
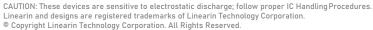
General Description

The LTA082H is a cost-effective industry-standard operational amplifier of low power, 40 V wide supply voltage, low noise, rail-to-rail output operational amplifiers capable of operating on supplies ranging from+4.5 V (\pm 2.25 V) to +40 V (\pm 20 V). The LTA ? offerö outstanding dc precision and ac performance, including low offset (\pm mV typically), low offset drift (\pm 2 μ V/°C typically), MHz bandwidth, and nV/ \sqrt{Hz} input voltage noise density at 10 kHz. Unique features make the LTA ? high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA082H provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter and high electro-static discharge (ESD) protection. The LTA082H are optimized for operation at voltages from +4.5 V (\pm 2.25 V) to +40 V (\pm 20 V) over the extended temperature range of 40 °C to +125 °C.


Features and Benefits


- Wide Supply: ±2.25 V to ±20 V, 4.5 V to 40 V
- Low Offset Voltage: ±1 mV typically
- Low Offset Voltage Drift: ±2 μV/°C
- High Common-Mode Rejection: 105 dB
- Gain Bandwidth: 5.25 MHz
- Slew Rate: 9 V/µs
- Low Noise: 21 nV/√Hz at 10 kHz
- Low Bias Current: ±5 nA over the extended temperature range
- Rail-to-Rail Output

Applications

- Tracking Amplifier in Power Modules
- Merchant Power Supplies
- High-Side and Low-Side Current Sensing
- Battery-Powered Instruments
- Programmable Logic Controllers
- Solar energy: string and central inverter
- Motor drives: AC and servo drive control and power stage modules
- Single phase online UPS
- Three phase UPS
- Pro audio mixers

Pin Configuration (Top View)

All other trademarks mentioned are the property of their respective owners.

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from $V_{S^{\perp}}$ to $V_{S^{\star}}$ – 1.5 V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as –IN.
+V _S	Positive power supply. The voltage is from 4.5 V to 40 V. Split supplies are possible as long as the voltage between V_{S^\star} and V_{S^-} is from 4.5 V to 40V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between $V_{S^{\star}}$ and $V_{S^{-}}$ is from 4.5 V to 40 V.
OUT	Amplifier output.
NC	No connection

Ordering Information ⁽¹⁾

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA082HXS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV082

(1) Please contact to your Linearin representative for the latest availability information and product content details.

(2) Eco Class - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).

(3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V_{S^*} to V_{S^-}	60 V
Signal Input Terminals: Voltage, Current	–V _s – 0.3 V to +V _s + 0.3 V, \pm 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	–65 to +150 ℃
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	ltem	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 ⁽¹⁾	2 000	. M
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 $^{(2)}$	1 000	· v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

Linearin and designs are registered trademarks of Linearin Technology Corporation.

[©] Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Electrical Characteristics

 V_{S} = 4.5 V to 40 V, T_{A} = +25 °C, V_{CM} = V_{OUT} = $V_{S}/2$, and R_{L} = 10 k Ω connected to $V_{S}/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_{A} = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
OFFSET VOLTAGE								
Input offset voltage	V _{os}			±1	±4	mV		
Offset voltage drift	V _{os} TC	T _A = −40 to +125 °C		±2		µV/⁰C		
Power supply	PSRR	$V_{\rm S}$ = 4.5 to 40 V, $V_{\rm CM}$ = 0.1 V				- μV/V		
rejection ratio		T _A = −40 to +125 °C		10		. ,		
INPUT BIAS CURRENT								
			100			– pA		
Input bias current	I _B	$T_A = -40 \text{ to } +85 ^{\circ}\text{C}$ 95				-		
		T _A = −40 to +125 °C		5		nA		
Input offset current	l _{os}			5		nA		
NOISE								
Input voltage noise	V _n	f = 0.1 to 10 Hz		9		μV_{P-P}		
Input voltage noise	e _n	f = 1 kHz	37			– nV/√Hz		
density		f = 10 kHz		21		•		
Input current noise density	I _n	f = 1 kHz 80			fA/√Hz			
INPUT VOLTAGE								
Common-mode voltage range	$V_{\rm CM}$		-V _s		+V _s -1.5	V		
Common-mode	CMRR	_V _S = 40 V, V _{CM} = 0 to 38 V		105				
rejection ratio		$V_{CM} = 0.1$ to 38 V, $T_A = -40$ to +125 °C		95				
			to +125 °C 95			-		
INPUT IMPEDANCE								
1	•	Differential		2.0				
Input capacitance	C _{IN}	Common mode		3.5		- pF		
OPEN-LOOP GAIN								
		V _S = 40 V, V ₀ = 0.1 to 39.9 V		126		_		
Open-loop voltage	A _{VOL}	T _A = −40 to +125 °C		118 116 108		- dB -		
gain		V _S = 5 V, V ₀ = 0.1 to 4.9 V						
		T _A = −40 to +125 °C						
FREQUENCY RESPONS	SE							
Gain bandwidth product	GBW			5.25		MHz		
Slew rate	SR	V _S = 40 V, G = +1, 10 V step	0 V, G = +1, 10 V step 9			V/µs		
Total harmonic distortion + noise	THD+N	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.0002		%		
Cottling time		To 0.1%, V _s = 40 V, G = +1, 5 V step		1.6				
Settling time	t _s	To 0.01%, V _S = 40 V, G = +1, 5 V step		3.5		— μs		
Overload recovery time	t _{or}	$V_{IN} \times Gain > V_S$		0.6		μs		

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

Electrical Characteristics (continued)

 V_{S} = 4.5 V to 40 V, T_{A} = +25 °C, V_{CM} = V_{OUT} = $V_{S}/2$, and R_{L} = 10 k Ω connected to $V_{S}/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_{A} = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Ουτρυτ				·		
High output voltage swing	V _{OH}	V_{S} = ± 20 V, R_{L} = 10 $k\Omega$		+V _S -95		– mV
		V_{S} = ± 20 V, R_{L} = 2 k Ω		+V _s -255		
Low output voltage swing	V _{OL}	V_{S} = ± 20 V, R_{L} = 10 $k\Omega$		-V _s +60		– mV
Low output voltage swing		V_{S} = ± 20 V, R_{L} = 2 k Ω		-V _S +240		
Short-circuit current	I _{sc}			±45		mA
POWER SUPPLY						
Operating supply voltage	Vs	T _A = −40 to +125 °C	4.5		40	V
Quiescent current (per amplifier)	۱ _۵	V _s = 5 V		2.05		– mA
		V _s = 40 V		2.75		
THERMAL CHARACTERISTICS						
Operating temperature range	T _A		-40		+125	°C
Package Thermal Resistance	θ _{JA}	SOIC-8L		125		°C/W

