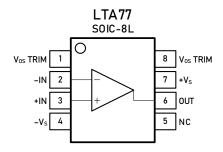
General Description

The LTA77 is a 44-V micro-power alternative to the industry-standard OP77/OP07 precision amplifiers. The LTA77 offer outstanding dc precision and ac performance, including 25 μ V ultralow offset, below 0.3 μ V/°C drift over temperature, 0.5 μ V_{P-P} input voltage noise and 0.9 MHz bandwidth. External offset trimming is not required in the majority of circuits.

A PSRR of 3 μ V/V (110 dB) and CMRR of 1.0 μ V/V (120 dB) maximum virtually eliminate errors caused by power supply drifts and common-mode signals. This combination of outstanding characteristics makes the LTA77 ideally suited for high resolution instrumentation and other tight error budget systems.

The robust design of the LTA77 provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection. The LTA77 is optimized for operation at voltages from +6 V (± 3 V) to +44 V (± 22 V) over the extended temperature range of -40 °C to +125 °C.


Features and Benefits

- Offset Voltage: 25 μV Maximum (LTA77E)
- Offset Voltage Drift: 0.3 μV/°C Maximum (LTA77E)
- 0.1 to 10 Hz Noise: 0.5 μV_{P-P}
- High Common-Mode Rejection: 0.1 μV/V (140 dB)
- Wide Supply: ±3 V to ±22 V, 6 V to 44 V
- Wide Bandwidth: 0.9 MHz
 High Slew Rate: 0.48 V/µs
- Low Quiescent Current: 1 mA per Amplifier
- EMI/RFI Filtered Inputs

Applications

- Replaces 0P07/0P77/0P97/0P177 with Improved Performance
- High-Side and Low-Side Current Sensing
- Multiplexed Data-Acquisition Systems
- Test and Measurement Equipment
- High-Resolution ADC Driver Amplifiers
- SAR ADC Reference Buffers
- Programmable Logic Controllers
- High Precision Comparator

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from V_{S-} to V_{S+} .
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as –IN.
OUT	Amplifier output.
V _{os} TRIM	External input offset voltage adjustment
+V _S	Positive power supply. The voltage is from 6 V to 44 V. Split supplies are possible as long as the voltage between V_{S+} and V_{S-} is from 6 V to 44 V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S_+} and V_{S} is from 6 V to 44 V.
NC	No connection.

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code
LTA77EXS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	ZT-77
LTA77FXS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	ZT-77

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V_{S+} to V_{S-}	44 V
Signal Input Terminals: Voltage, Current	V_{S-} to V_{S+} , ± 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	-65 °C to +150 °C
Junction Temperature, T _J	150 °C
Lead Temperature Range (Soldering 10 sec)	260 °C

ESD Rating

Parameter	Item	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 (1)	2 000	V
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	2 000	- V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

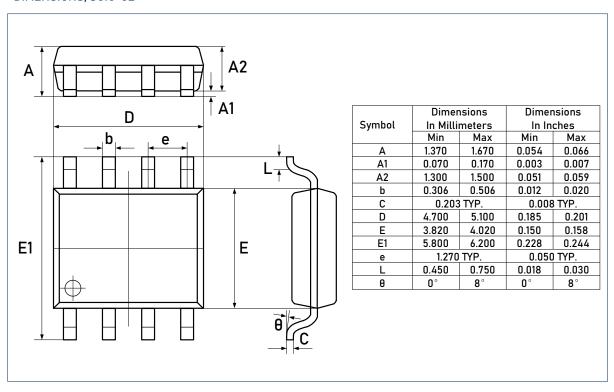
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

Electrical Characteristics

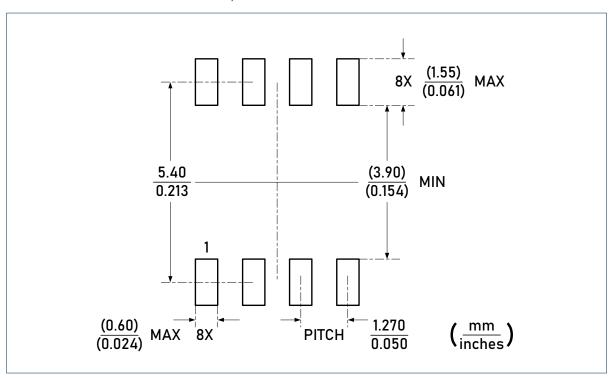
 V_S = ± 15 V, T_A = +25 °C, V_{CM} = $V_S/2$, V_0 = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFFSET VOLTAGE		'					
		LTA77E		±10	± 25	- μV	
Input offset voltage	V _{os}	LTA77F		± 20	± 60		
Offset voltage drift		LTA77E, T _A = -40 to +125 °C			± 0.3	/٥С	
	V _{os} TC	LTA77E, T _A = -40 to +125 °C			± 0.6	μV/°C	
1 1 1 1111 (1)		LTA77E		± 0.3		24/24	
Long-term stability ⁽¹⁾	V _{os} TC	LTA77F		± 0.4		μV/Mo	
Power supply	PSRR	LTA77E, V _S = ±3 to ±18 V		0.7	3		
rejection ratio	PSRK	LTA77F, V _S = ±3 to ±18 V		0.7	5	μV/V	
INPUT BIAS CURRENT							
Innut his a surrent		LTA77E			2	A	
Input bias current	I _B	LTA77F			2.8	- nA	
Input offset current	I _{os}			0.2		nA	
NOISE							
Input voltage noise	V _n	f = 0.1 to 10 Hz		0.5		μV_{P-P}	
Input current noise	I _n	f = 0.1 to 10 Hz		10		pA _{P-P}	
INPUT VOLTAGE							
Common-mode voltage range	V _{CM}		±13	±14		٧	
Common-mode	OLIDD	LTA77E, V_{CM} = $\pm 13 \text{ V}$		0.1	1.0		
rejection ratio	CMRR	LTA77F, V_{CM} = $\pm 13 \text{ V}$		0.1	1.6	μV/V	
INPUT IMPEDANCE							
In most as a site as a		Differential		2.0			
Input capacitance	C _{IN}	Common mode		3.5		- pF	
OPEN-LOOP GAIN							
Open-loop voltage	Δ.	LTA77E, $R_L \ge 2 \text{ k}\Omega$, $V_0 = \pm 10 \text{ V}$	5,000	12,000		- V/mV	
gain	A_{VOL}	LTA77F, $R_L \ge 2 \text{ k}\Omega$, $V_0 = \pm 10 \text{ V}$	2,000	6,000			
FREQUENCY RESPONS	SE .						
Gain bandwidth product	GBW			0.9		MHz	
Slew rate	SR	G = +1, C_L = 100 pF, V_0 = 1.5 to 3.5 V		0.5		V/µs	
OUTPUT							
Output voltage swing	V	R _L = 10 kΩ		±14	±14.9	- V	
	V_D	$R_L = 1 k\Omega$		\pm 13.5	± 14.5	v	
Short-circuit current	I _{sc}				± 22	mA	
Offset adjustment range					±1.5	mV	

⁽¹⁾ Long-term input offset voltage stability refers to the averaged trend line of V_{OS} vs. time over extended periods after the first 30 days of operation.


Electrical Characteristics (continued)

 V_S = ± 15 V, T_A = +25 °C, V_{CM} = $V_S/2$, V_0 = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
POWER SUPPLY						
Operating supply voltage	V _s	T _A = -40 to +125 °C	6		44	٧
Quiescent current (per amplifier)		V _S = ±15 V, no load		0.22	0.31	mA
	IQ	$V_S = \pm 3 \text{ V, no load}$		0.21	0.3	
THERMAL CHARACTE	RISTICS					
Operating temperature range	T _A		-40		+125	°C
Package Thermal Resistance	θ _{JA}	SOIC-8L		125		°C/W

Package Outlines (continued)

DIMENSIONS, SOIC-8L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L

New Generation High Precision Operational Amplifier

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

